The Intermolecular Potential Functions

In this section we outline the two-body, metal, Tersoff, three-body and four-body potential functions in . An important distinction between these and intramolecular (bond) forces in DL_POLY_4 is that they are specified by atom types rather than atom indices.

Short Ranged (van der Waals) Potentials

The short ranged pair forces available in DL_POLY_4 are as follows:

  1. 12-6 potential: (12-6)

    (50)\[U(r_{ij}) = \left(\frac{A}{r_{ij}^{12}}\right)-\left(\frac{B}{r_{ij}^{6}}\right)\]
  2. Lennard-Jones potential: (lj)

    (51)\[U(r_{ij}) = 4\epsilon\left[\left (\frac{\sigma}{r_{ij}}\right)^{12}-\left(\frac{\sigma}{r_{ij}}\right)^{6}\right]\]
  3. Lennard-Jones cohesive potential 8: (ljc)

    (52)\[U(r_{ij}) = 4\epsilon\left[\left (\frac{\sigma}{r_{ij}}\right)^{12}-c_{ij}\left(\frac{\sigma}{r_{ij}}\right)^{6}\right]\]

    This potential has an extra constant to tune the attractive part of the potential serving to describe the different cohesiveness between different fluids and surfaces in engineering flows models.

  4. Lennard Jones, generalised by Frenkel et al. 121: (ljf)

    (53)\[\begin{split}U(r_{ij}) = \left\{ \begin{array}{lr} \varepsilon_{AB}\alpha_{AB}\left[ \left(\frac{\sigma_{AB}}{r_{ij}}\right)^2 -1\right]\left[ \left(\frac{r_{AB}^c}{r_{ij}}\right)^2 -1\right]^2 & r \leq r_{AB}^c \\ 0 & r > r_{AB}^c \\ \end{array} \right. \label{eq:ljf}\end{split}\]

    with

    \[\alpha_{AB} = \frac{1}{4}\left(\frac{r_{AB}^c}{\sigma_{AB}}\right)^2\left( \frac{3}{\left(\frac{r_{AB}^c}{\sigma_{AB}}\right)^2-1}\right)^3\]
  5. n-m potential (aka Mie) 15,64: (nm)

    (54)\[U(r_{ij}) = \frac{E_{o}}{(n-m)}\left[m\left (\frac{r_{o}}{r_{ij}}\right)^{n}-n\left(\frac{r_{o}}{r_{ij}}\right)^{m}\right]\]
  6. Buckingham potential: (buck)

    (55)\[U(r_{ij}) = A~\exp\left(-\frac{r_{ij}}{\rho}\right)-\frac{C}{r_{ij}^{6}}\]
  7. Born-Huggins-Meyer potential: (bhm)

    (56)\[U(r_{ij}) = A~\exp[B(\sigma-r_{ij})]-\frac{C}{r_{ij}^{6}}-\frac{D}{r_{ij}^{8}}\]
  8. Hydrogen-bond (12-10) potential: (hbnd)

    (57)\[U(r_{ij}) = \left(\frac{A}{r_{ij}^{12}}\right)-\left(\frac{B}{r_{ij}^{10}}\right)\]
  9. Shifted force n-m potential (aka Mie) 15,64: (snm)

    (58)\[\begin{split}\begin{aligned} U(r_{ij})=&\frac{\alpha E_{o}}{(n-m)}\left [ m\beta^{n}\left \{ \left (\frac{r_{o}}{r_{ij}}\right )^{n}- \left(\frac{1}{\gamma}\right)^{n}\right \}- n\beta^{m}\left \{ \left (\frac{r_{o}}{r_{ij}}\right )^{m}- \left(\frac{1}{\gamma}\right)^{m}\right \} \right ]~+~\phantom{xxxx} \nonumber \\ & \frac{nm\alpha E_{o}}{(n-m)} \left ( \frac{r_{ij}-\gamma r_{o}}{\gamma r_{o}} \right )\left\{\left(\frac{\beta}{\gamma}\right )^{n}-\left(\frac{\beta}{\gamma}\right )^{m}\right \}~~,\end{aligned}\end{split}\]

    with

    \[\begin{split}\begin{aligned} \alpha=&\frac{(n-m)}{[n\beta^{m}(1+(m/\gamma-m-1)/\gamma^{m})- m\beta^{n}(1+(n/\gamma-n-1)/\gamma^{n})]} \nonumber \\ \beta =& \gamma\left( \frac{\gamma^{m+1}-1}{\gamma^{n+1}-1} \right)^{\frac{1}{n-m}} \\ \gamma =& \frac{r_{\rm cut}}{r_{o}}~~. \nonumber\end{aligned}\end{split}\]

    This peculiar form has the advantage over the standard shifted n-m potential in that both \(E_{o}\) and \(r_{0}\) (well depth and location of minimum) retain their original values after the shifting process.

  10. Morse potential: (mors)

    (59)\[U(r_{ij}) = E_{o}~[\{1-\exp(-k(r_{ij}-r_{o}))\}^{2}-1]\]
  11. Shifted Weeks-Chandler-Andersen (WCA) potential 123: (wca)

    (60)\[\begin{split}U(r_{ij}) = \left\{ \begin{array} {l@{\quad:\quad}l} 4\epsilon\left[\left(\frac{\sigma}{r_{ij}-\Delta}\right)^{12}-\left(\frac{\sigma}{r_{ij}-\Delta}\right)^{6}\right] +\epsilon & r_{ij} < 2^{1 \over 6}~\sigma + \Delta \\ 0 & r_{ij} \ge 2^{1 \over 6}~\sigma + \Delta \end{array} \right. \label{wca}\end{split}\]

    The WCA potential is the Lennard-Jones potential truncated at the position of the minimum and shifted to eliminate discontinuity (includes the effect of excluded volume). It is usually used in combination with the FENE, equation (10), bond potential. This implementation allows for a radius shift of up to half a \(\sigma\) (\(|\Delta| \le 0.5~\sigma\)) with a default of zero (\(\Delta_{default} = 0\)).

  12. Standard DPD potential: (dpd)

    (61)\[\begin{split}U(r_{ij}) = \left\{ \begin{array} {l@{\quad:\quad}l} \frac{A}{2}~r_{c}~\left(1-\frac{r_{ij}}{r_{c}}\right)^{2} & r_{ij} < r_{c} \\ 0 & r_{ij} \ge r_{c} \end{array} \right.\end{split}\]

    It takes the Groot-Warren 39 form giving a soft and purely repulsive interaction.

  13. \(n\)DPD potential: (ndpd)

    \[\begin{split}U(r_{ij}) = \left\{ \begin{array} {l@{\quad:\quad}l} \frac{Ab}{n+1}~r_{c}~\left(1-\frac{r_{ij}}{r_{c}}\right)^{n+1} - \frac{A}{2}~r_{c}~\left(1-\frac{r_{ij}}{r_{c}}\right)^{2} & r_{ij} < r_{c} \\ 0 & r_{ij} \ge r_{c} \end{array} \right.\end{split}\]

    It is a modification of the ‘standard DPD’ Groot-Warren form 105, providing additional attraction and more control over repulsion with power index \(n\) while still remaining soft.

  14. 14-7 pair potential 74: (14-7)

    (62)\[U(r_{ij}) = \epsilon\left(\frac{1.07}{(r_{ij}/r_{o})+0.07}\right)^{7}\left(\frac{1.12}{(r_{ij}/r_{o})^{7}+0.12}-2\right)\]
  15. Morse modified 71: (mstw)

    (63)\[U\left(r_{ij}\right) = E_{0}~\{\left[1-\exp\left(-k\left(r_{ij}-r_{0}\right)\right)\right]^{2}-1\}+\frac{c}{r_{ij}^{12}}\]
  16. Rydberg: ( ryd)

    (64)\[U\left(r_{ij}\right) = \left(a+br_{ij}\right)\exp\left(-r_{ij}/\rho\right)\]
  17. Ziegler-Biersack-Littmark (ZBL): 126 (zbl)

    (65)\[U(r_{ij}) = \frac{Z_{1} Z_{2}e^{2}}{4 \pi \varepsilon_{0} \varepsilon_{r}} \sum_{i=1}^{4} b_{i} \exp\left(-c_{i}r/a\right)~~,\]

    where

    \[\begin{split}\begin{split} a=&~\frac{0.88534 \cdot a_{B}}{Z_{1}^{0.23}+Z_{2}^{0.23}} \\ b=&~[0.18175,0.50986,0.28022,0.02817] \\ c=&~[3.1998,0.94229,0.40290,0.20162] \\ a_{B}=&~ 0.52917721067~\textrm{\AA}~~. \nonumber \end{split}\end{split}\]
  18. ZBL mixed with Morse, 117: (zbls)

    (66)\[U\left(r_{ij}\right) = f\left(r_{ij}\right)U_{ZBL}\left(r_{ij}\right)+\left(1-f\left(r_{ij}\right)\right)U_{morse}\left(r_{ij}\right)~~,\]

    with \(f\left(r\right)\) defined by

    \[\begin{split}f\left(r\right) = \left\{ \begin{array}{ll} 1-e^{-\left(r_m-r\right)/\xi}/2 & ~~:~~ r<r_m \\ e^{-\left(r-r_m\right)/\xi}/2 & ~~:~~ r\geq r_m~~. \\ \end{array} \right.\end{split}\]
  19. ZBL mixed with Buckingham, 117: (zblb)

    (67)\[U\left(r_{ij}\right) = f\left(r_{ij}\right)U_{ZBL}\left(r_{ij}\right)+\left(1-f\left(r_{ij}\right)\right)U_{buckingham}\left(r_{ij}\right)~~,\]

    with \(f\left(r\right)\) defined by

    \[\begin{split}f\left(r\right) = \left\{ \begin{array}{ll} 1-e^{-\left(r_m-r\right)/\xi}/2 & ~~:~~ r<r_m \\ e^{-\left(r-r_m\right)/\xi}/2 & ~~:~~ r\geq r_m~~. \\ \end{array} \right.\end{split}\]
  20. Lennard-Jones tapered with Mei-Davenport-Fernando taper (MDF), 79: (mlj)

    (68)\[U\left(r_{ij}\right) = f\left(r_{ij}\right)U_{LJ}\left(r_{ij}\right)~~,\]

    where

    \[\begin{split}f(r)= \begin{cases} 1 & ~~:~~ r<r_i \\ \frac{\left(r_c-r\right)^3\left(10r_i^2-5r_cr_i-15rr_i+r_c^2+3rr_c+6r^2\right)}{\left(r_c-r_i\right)^5} & ~~:~~ r_i \leq r \leq r_c \\ 0 & ~~:~~ r>r_c~~.\\ \end{cases}\end{split}\]

    \(r_c\) is set to \(r_{vdw}\) and controled by rvdw.

  21. Buckingham tapered with MDF: (mbuc)

    (69)\[U\left(r_{ij}\right) = f\left(r_{ij}\right)U_{Buckingham}\left(r_{ij}\right)\]

    See mlj for more details.

  22. 12-6 Lennard-Jones tapered with Mei-Davenport-Fernando taper (MDF): (m126)

    (70)\[U\left(r_{ij}\right) = f\left(r_{ij}\right)U_{12-6}\left(r_{ij}\right)\]

    See mlj for more details.

  23. Tabulation: (tab). The potential is defined numerically only.

The parameters defining these potentials are supplied to DL_POLY_4 at run time (see the description of the FIELD file in Section The FIELD File). Each atom type in the system is specified by a unique eight-character label defined by the user. The pair potential is then defined internally by the combination of two atom labels.

It is worth noting that some potentials are implemented in an extended form from their original reference specification. Often this is done by replacing the \(r\) argument by \(r-r_{o}\) to define a surface softness/hardness width/radius.

As well as the numerical parameters defining the potentials, should also be provided with a cutoff radius, \(r_{\rm vdw}\), which sets a range limit on the computation of the interactions. It is worth noting that some interaction come with a hard-wired cutoff in their parameter sets! Thus any provided cutoff radius, \(r_{\rm vdw}\), will be reset if it is not equal or larger that the largest of these all. Together with the parameters, the cutoff is used by the subroutine vdw_generate to construct an interpolation array vvdw for the potential function over the range 0 to \(r_{\rm vdw}\). A second array gvdw is also calculated, which is related to the potential via the formula:

\[G(r_{ij}) = -r_{ij}\frac{\partial}{\partial r_{ij}}U(r_{ij})~~,\]

and is used in the calculation of the forces. Both arrays are tabulated in units of energy. The use of interpolation arrays, rather than the explicit formulae, makes the routines for calculating the potential energy and atomic forces very general, and enables the use of user defined pair potential functions. DL_POLY_4 also allows the user to read in the interpolation arrays directly from a file (implemented in the vdw_table_read routine) and the TABLE file (Section The TABLE File). This is particularly useful if the pair potential function has no simple analytical description (e.g. spline potentials).

The force on an atom \(j\) derived from one of these potentials is formally calculated with the standard formula:

(71)\[\underline{f}_{j} = -\frac{1}{r_{ij}}\left[\frac{\partial}{\partial r_{ij}}U(r_{ij})\right]\underline{r}_{ij}~~,\]

where \(\underline{r}_{ij} = \underline{r}_{j}-\underline{r}_{i}\) . The force on atom \(i\) is the negative of this.

The contribution to be added to the atomic virial (for each pair interaction) is

\[{\cal W} = -\underline{r}_{ij} \cdot \underline{f}_{j}~~.\]

The contribution to be added to the atomic stress tensor is given by

(72)\[\sigma^{\alpha \beta} = r_{ij}^{\alpha}f_{j}^{\beta}~~,\]

where \(\alpha\) and \(\beta\) indicate the \(x,y,z\) components. The atomic stress tensor derived from the pair forces is symmetric.

Since the calculation of pair potentials assumes a spherical cutoff (\(r_{\rm vdw}\)) it is necessary to apply a long-ranged correction to the system potential energy and virial. Explicit formulae are needed for each case and are derived as follows. For two atom types \(a\) and \(b\), the correction for the potential energy is calculated via the integral

\[U_{corr}^{ab} = 2\pi \frac{N_{a}N_{b}}{V}\int_{r_{\rm vdw}}^{\infty}g_{ab}(r)U_{ab}(r)r^{2}dr~~,\]

where \(N_{a},N_{b}\) are the numbers of atoms of types \(a\) and \(b\) in the system, \(V\) is the system volume and \(g_{ab}(r)\) and \(U_{ab}(r)\) are the appropriate pair correlation function and pair potential respectively. It is usual to assume \(g_{ab}(r)=1\) for \(r>r_{\rm vdw}\) . DL_POLY_4 sometimes makes the additional assumption that the repulsive part of the short ranged potential is negligible beyond \(r_{\rm vdw}\) .

The correction for the system virial is

\[{\cal W}_{corr}^{ab} = -2\pi \frac{N_{a}N_{b}}{V} \int_{r_{\rm vdw}}^{\infty}g_{ab}(r) \frac{\partial}{\partial r}U_{ab}(r)r^{3}dr~~,\]

where the same approximations are applied.

Note

These formulae are based on the assumption that the system is reasonably isotropic beyond the cutoff. It is worth noting that the 14-7 pair potential’s corrections to system energy and virial are solved numerically.

In DL_POLY_4 the short ranged forces are calculated by the subroutine vdw_forces. The long-ranged corrections are calculated by routine vdw_lrc. The calculation makes use of the Verlet neighbour list (see above).

Notes on mixing rules for short-ranged interactions

DL_POLY_4 allows a short cut for mixing some of the explicitly specified pair interactions for single species of the same type so that cross-species interactions are generated if unspecified. This is only possible for the 12-6, lj, dpd, 14-7, wca & ljc types. The mixing is derived from the Lennard-Jones style characteristic paramteres for energy (\(\epsilon\)) and distance (\(\sigma\) or \(r_{0}\)) terms. The available types of mixing within DL_POLY_4 are borrowed from 3. The rules’ names and formulae are as follows:

  1. Lorentz-Berthelot

    \[\epsilon_{ij} = \sqrt{\epsilon_{i}~\epsilon_{j}}~~;~~\sigma_{ij} = \frac{\sigma_{i}+\sigma_{j}}{2}\]
  2. Fender-Halsey

    \[\epsilon_{ij} = 2 \frac{\epsilon_{i}~\epsilon_{j}}{\epsilon_{i}+\epsilon_{j}}~~;~~\sigma_{ij} = \frac{\sigma_{i}+\sigma_{j}}{2}\]
  3. Hogervorst (good hope)

    \[\epsilon_{ij} = \sqrt{\epsilon_{i}~\epsilon_{j}}~~;~~\sigma_{ij} = \sqrt{\sigma_{i}~\sigma_{j}}\]
  4. Halgren HHG

    \[\epsilon_{ij} = 4 \frac{\epsilon_{i}~\epsilon_{j}}{\left(\epsilon_{i}^{1/2}+\epsilon_{j}^{1/2}\right)^{2}}~~;~~\sigma_{ij} = \frac{\sigma_{i}^{3}+\sigma_{j}^{3}}{\sigma_{i}^{2}+\sigma_{j}^{2}}\]
  5. Waldman-Hagler

    \[\epsilon_{ij} = 2 \sqrt{\epsilon_{i}~\epsilon_{j}} \frac{(\sigma_{i}~\sigma_{j})^{3}}{\sigma_{i}^{6}+\sigma_{j}^{6}}~~;~~\sigma_{ij} = \left(\frac{\sigma_{i}^{6}+\sigma_{j}^{6}}{2}\right)^{\frac{1}{6}}\]
  6. Tang-Toennies

    \[\epsilon_{ij} \sigma_{ij}^{6} = \sqrt{\epsilon_{i} \sigma_{i}^{6}~\epsilon_{j} \sigma_{j}^{6}}~~;~~\epsilon_{ij} \sigma_{ij}^{12}=\left[\frac{\left(\epsilon_{i} \sigma_{i}^{12}\right)^{13}+\left(\epsilon_{j} \sigma_{j}^{12}\right)^{13}}{2}\right]^{13}\]
  7. Functional

    \[\epsilon_{ij} = \frac{3~\sqrt{\epsilon_{i}~\epsilon_{j}}~(\sigma_{i}~\sigma_{j})^{3}} {\sum\limits_{L=0}^{2}{\left[\frac{\left(\sigma_{i}^{3}+\sigma_{j}^{3}\right)^{2}}{4~(\sigma_{i}~\sigma_{i})^{L}}\right]^{\frac{6}{6-2L}}}}~~;~~\sigma_{ij}=\frac{1}{3}\sum\limits_{L=0}^{2}{\left[\frac{\left(\sigma_{i}^{3}+\sigma_{j}^{3}\right)^{2}}{4~(\sigma_{i}~\sigma_{i})^{L}}\right]^{\frac{1}{6-2L}}}\]

It is woth noting that the \(i\) and \(j\) symbols in the equations for mixing denote atom types (species) and the indices for the same species interaction parameters are contracted to a single species index for simplicity.

Metal Potentials

The metal potentials in DL_POLY_4 follow two similar but distinct formalisms. The first of these is the embedded atom model (EAM) 20,35 and the second is the Finnis-Sinclair model (FS) 34. Both are density dependent potentials derived from density functional theory (DFT) and describe the bonding of a metal atom ultimately in terms of the local electronic density. They are suitable for calculating the properties of metals and metal alloys. The extended EAM (EEAM) 40,52 is a generalisation of the EAM formalism which can include both EAM and FS type of mixing rules (see below).

It is worth noting that the same formalism applies to the many-body perturbation component of the actinide oxide potentials as in 17. Thus their many-body component description is included in this Section.

For single component metals the two main approaches, FS and EAM, are the same. However, they are subtly different in the way they are extended to handle alloys (see below). It follows that EAM and FS class potentials cannot be mixed in a single simulation. Furthermore, even for FS class potentials possessing different analytical forms there is no agreed procedure for mixing the parameters. Mixing EAM and EEAM potentials is only possible if the EAM ones are generalised to EEAM form (see below). The user is, therefore, strongly advised to be consistent in the choice of potential when modelling alloys.

The general form of the EAM and FS types of potentials is 46

(73)\[U_{metal} = {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} V_{ij}(r_{ij}) + \sum_{i=1}^{N} F(\rho_{i})~~, \label{um}\]

where \(F(\rho_{i})\) is a functional describing the energy of embedding an atom in the bulk density, \(\rho_{i}\), which is defined as

(74)\[\rho_{i} = \sum_{j=1, j \ne i}^{N} \rho_{ij}(r_{ij})~~. \label{umd}\]

It should be noted that the density is determined by the coordination number of the atom defined by pairs of atoms. This makes the metal potential dependent on the local density (environmental). \(V_{ij}(r_{ij})\) is a pair potential incorporating repulsive electrostatic and overlap interactions. \(N\) is the number of interacting particles in the MD box.

In DL_POLY_4 EAM and thus EEAM can be further generalised to include two-band (2B) densities 1,69, for \(s\)- and \(d\)-bands,

(75)\[F(\rho_{i})=F^{s}(\rho^{s}_{i})+F^{d}(\rho^{d}_{i})~~, \label{2b}\]

where

(76)\[\rho^{q}_{i} = \sum_{j=1, j \ne i}^{N} \rho^{q}_{ij}(r_{ij})~,~~q=s,d~~, \label{2umd}\]

instead of just the one, \(s\), as in equations (73) and (74). These will be referred in the following text as 2BEAM and 2BEEAM. Mixing 2BEAM and EAM and alternatively 2BEEAM and EEAM potentials is only possible if the single band ones are generalised to 2B forms. The user is, again, reminded to be consistent in the choice of potential when modelling alloys.

The types of metal potentials available in DL_POLY_4 are as follows:

  1. EAM potential: (eam) There are no explicit mathematical expressions for EAM potentials, so this potential type is read exclusively in the form of interpolation arrays from the TABEAM table file (as implemented in the metal_table_read routine - Section The TABEAM File.) The rules for combining the potentials from different metals to handle alloys are different from the FS class of potentials (see below).

  2. EEAM potential (eeam) Similar to EAM above, it is given in the form of interpolation arrays from the TABEAM file, but the rules for combining the potentials from different metals are different from both EAM and FS classes (see below).

  3. 2BEAM potential (2beam) Similar to EEAM for the \(s\) density terms and to EAM for the \(d\) ones. It is and given in the form of interpolation arrays from the TABEAM file, but the rules for combining the potentials from different metals are different from both EAM, EEAM and FS classes (see below).

  4. 2BEEAM potential (2beeam) Similar to EEAM for both \(s\) and \(d\) density terms. It is and given in the form of interpolation arrays from the TABEAM file, but the rules for combining the potentials from different metals are different from both EAM, EEAM, 2BEAM and FS classes (see below).

  5. Finnis-Sinclair potential 34: (fnsc) Finnis-Sinclair potential is explicitly analytical. It has the following form:

    \[\begin{split}\begin{aligned} V_{ij}(r_{ij})=& \left\{ \begin{array} {l@{\quad:\quad}l} (r_{ij}-c)^{2} (c_{0}+c_{1}r_{ij}+c_{2}r_{ij}^{2}) & r_{ij} < c \\ 0 & r_{ij} > c \end{array} \right. \nonumber \\ \rho_{ij}(r_{ij}) =& \left\{ \begin{array} {l@{\quad:\quad}l} (r_{ij}-d)^{2} + \beta \displaystyle \frac{(r_{ij}-d)^{3}}{d} & r_{ij} < d \\ 0 & r_{ij} > d \end{array} \right. \\ F(\rho_{i}) =& -A \sqrt{\rho_{i}}~~, \nonumber\end{aligned}\end{split}\]

    with parameters: \(c_{0}\), \(c_{1}\), \(c_{2}\), \(c\), \(A\), \(d\), \(\beta\), both \(c\) and \(d\) are cutoffs. Since first being proposed a number of alternative analytical forms have been proposed, some of which are described below. The rules for combining different metal potentials to model alloys are different from the EAM potentials (see below).

  6. Extended Finnis-Sinclair potential 18: (exfs) It has the following form:

    \[\begin{split}\begin{aligned} V_{ij}(r_{ij}) =& \left\{ \begin{array} {l@{\quad:\quad}l} (r_{ij}-c)^{2} (c_{0}+c_{1}r_{ij}+c_{2}r_{ij}^{2}+c_{3}r_{ij}^{3}+c_{4}r_{ij}^{4}) & r_{ij} < c \\ 0 & r_{ij} > c \end{array} \right. \nonumber \\ \rho_{ij}(r_{ij}) =& \left\{ \begin{array} {l@{\quad:\quad}l} (r_{ij}-d)^{2} + B^{2} (r_{ij}-d)^{4} & r_{ij} < d \\ 0 & r_{ij} > d \end{array} \right. \\ F(\rho_{i}) =& -A \sqrt{\rho_{i}}~~, \nonumber\end{aligned}\end{split}\]

    with parameters: \(c_{0}\), \(c_{1}\), \(c_{2}\), \(c_{3}\), \(c_{4}\), \(c\), \(A\), \(d\), \(B\), both \(c\) and \(d\) are cutoffs.

  7. Sutton-Chen potential 77,108,111: (stch) The Sutton Chen potential is an analytical potential in the FS class. It has the form:

    \[\begin{split}\begin{aligned} V_{ij}(r_{ij}) =& \epsilon \left( \frac{a}{r_{ij}} \right)^{n} \nonumber \\ \rho_{ij}(r_{ij}) =& \left( \frac{a}{r_{ij}} \right)^{m} \\ F(\rho_{i}) =& -c \epsilon \sqrt{\rho_{i}}~~, \nonumber\end{aligned}\end{split}\]

    with parameters: \(\epsilon\), \(a\), \(n\), \(m\), \(c\). Note that the parameter \(c\) for the mixed potential in multi-component allys is irrelevant as outlined in 77!

  8. Gupta potential 16: (gupt) The Gupta potential is another analytical potential in the FS class. It has the form:

    \[\begin{split}\begin{aligned} V_{ij}(r_{ij}) =& 2 A \exp \left(-p \frac{r_{ij}-r_{0}}{r_{0}}\right) \nonumber \\ \rho_{ij}(r_{ij}) =& \exp \left(-2 q_{ij} \frac{r_{ij}-r_{0}}{r_{0}}\right) \\ F(\rho_{i}) =& -B \sqrt{\rho_{i}}~~, \nonumber\end{aligned}\end{split}\]

    with parameters: \(A\), \(r_{0}\), \(p\), \(B\), \(q_{ij}\).

  9. Many body perturbation component potential 17: (mbpc) This component is another analytical potential in the FS class which two body part may be defined by a matching van der Waals potential in the vdw section of the FIELD file. It has the form:

    \[\begin{split}\begin{aligned} V_{ij}(r_{ij}) =& 0 \nonumber \\ \rho_{ij}(r_{ij})=& \left(\frac{a}{r_{ij}^{m}}\right) \frac{1}{2}\left[1+{\rm erf}\left(\alpha(r_{ij}-r_{\rm o})\right)\right] \\ F(\rho_{i}) =& -\epsilon \sqrt{\rho_{i}}~~, \nonumber\end{aligned}\end{split}\]

    with parameters: \(\epsilon\), \(a\), \(m\), \(\alpha\) and \(r_{\rm o}\).

    Note

    The parameters \(\alpha\) and \(r_{\rm o}\) must be the same for all defined potentials of this type. DL_POLY_4 will set \(\alpha={\rm Max}(0,\alpha_{pq})\) and \(r_{\rm o}={\rm Max}(0,r_{{\rm o}\_pq})\) for all defined interactions of this type between species \(p\) and \(q\). If after this any is left undefined, i.e. zero, the undefined entities will be set to their defaults: \(\alpha=20\) and \(r_{\rm o}={\rm Min}(1.5,0.2~r_{\rm cut})\).

All of these metal potentials can be decomposed into pair contributions and thus fit within the general tabulation scheme of , where they are treated as pair interactions (though note that the metal cutoff, \(r_{\rm met}\) has nothing to do with short ranged cutoff, \(r_{\rm vdw}\)). DL_POLY_4 calculates this potential in two stages: the first calculates the local density, \(\rho_{i}\), for each atom; and the second calculates the potential energy and forces. Interpolation arrays, vmet, gmet and fmet (metal_generate, metal_table_read) are used in both these stages in the same spirit as in the van der Waals interaction calculations.

The total force \(\underline{f}_{k}^{tot}\) on an atom \(k\) derived from this potential is calculated in the standard way:

\[\underline{f}_{k}^{tot} = -\underline{\nabla}_{k} U_{metal}~~.\]

We rewrite the EAM/FS potential, equation (73), as

\[\begin{split}\begin{aligned} U_{metal} =& U_{1} + U_{2} \nonumber \\ U_{1} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} V_{ij}(r_{ij}) \\ U_{2} =& \sum_{i=1}^{N} F(\rho_{i})~~, \nonumber \end{aligned}\end{split}\]

where \(\underline{r}_{ij} = \underline{r}_{j}-\underline{r}_{i}\) . The force on atom \(k\) is the sum of the derivatives of \(U_{1}\) and \(U_{2}\) with respect to \(\underline{r_{k}}\), which is recognisable as a sum of pair forces:

\[\begin{split}\begin{aligned} -\frac{\partial U_{1}}{\partial \underline{r_{k}}} =& -{1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} \frac{\partial V_{ij}(r_{ij})}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial \underline{r_{k}}} = \sum_{j=1,j \ne k}^{N} \frac{\partial V_{kj}(r_{kj})}{\partial r_{kj}} \frac{\underline{r_{kj}}}{r_{kj}} \nonumber \\ -\frac{\partial U_{2}}{\partial \underline{r_{k}}} =& -\sum_{i=1}^{N} \frac{\partial F}{\partial \rho_{i}} \sum_{j \ne i}^{N} \frac{\partial \rho_{ij}(r_{ij})}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial \underline{r_{k}}} \\ =& -\sum_{i=1,i \ne k}^{N} \frac{\partial F}{\partial \rho_{i}} \frac{\partial \rho_{ik}(r_{ik})}{\partial r_{ik}} \frac{\partial r_{ik}}{\partial \underline{r_{k}}} - \sum_{j=1,j \ne k}^{N} \frac{\partial F}{\partial \rho_{k}} \frac{\partial \rho_{kj}(r_{kj})}{\partial r_{kj}} \frac{\partial r_{kj}}{\partial \underline{r_{k}}} \nonumber \\ =& \sum_{j=1,j \ne k}^{N} \left( \frac{\partial F}{\partial \rho_{k}} + \frac{\partial F}{\partial \rho_{j}} \right) \frac{\partial \rho_{kj}(r_{kj})}{\partial r_{kj}} \frac{\underline{r_{kj}}}{r_{kj}}~~. \nonumber \end{aligned}\end{split}\]
  1. EAM force
    The same as shown above. However, it is worth noting that the generation of the force arrays from tabulated data (implemented in the metal_table_derivatives routine) is done using a five point interpolation procedure.
  2. EEAM force
    Information the same as that for EAM.
  3. 2BEAM force
    Information the same as that for EAM. However, as there is a second embedding contribution from the extra band complexity: \(U_{2}=U^{s}_{2}+U^{d}_{2}\) !
  4. 2BEEAM force
    Information the same as that for EAM. However, as there is a second embedding contribution from the extra band complexity: \(U_{2}=U^{s}_{2}+U^{d}_{2}\) !
  5. Finnis-Sinclair force

    \[\begin{split}\begin{aligned} -\frac{\partial U_{1}}{\partial \underline{r_{k}}} =& \sum_{j=1,j \ne k}^{N} \left\{ 2 (r_{kj}-c) (c_{0}+c_{1}r_{kj}+c_{2}r_{kj}^{2}) + (r_{kj}-c)^{2} (c_{1}+2c_{2}r_{kj}) \right\} \frac{\underline{r_{kj}}}{r_{kj}} \nonumber \\ -\frac{\partial U_{2}}{\partial \underline{r_{k}}} =& -\sum_{j=1,j \ne k}^{N} {A \over 2} \left( {1 \over \sqrt{\rho_{k}}} + {1 \over \sqrt{\rho_{j}}} \right) \left\{ 2(r_{kj}-d) + 3 \beta \frac{(r_{kj}-d)^{2}}{d} \right\} \frac{\underline{r_{kj}}}{r_{kj}}~~.\end{aligned}\end{split}\]
  6. Extended Finnis-Sinclair force

    \[\begin{split}\begin{aligned} -\frac{\partial U_{1}}{\partial \underline{r_{k}}} =& \sum_{j=1,j \ne k}^{N} \left\{ 2 (r_{kj}-c) (c_{0}+c_{1}r_{kj}+c_{2}r_{kj}^{2}+c_{3}r_{kj}^{3}+c_{4}r_{kj}^{4}) + \right. \nonumber \\ & \phantom{xxxxxxx} \left. (r_{kj}-c)^{2} (c_{1}+2c_{2}r_{kj}+3c_{3}r_{kj}^{2}+4c_{4}r_{kj}^{3}) \right\} \frac{\underline{r_{kj}}}{r_{kj}} \\ -\frac{\partial U_{2}}{\partial \underline{r_{k}}} =& -\sum_{j=1,j \ne k}^{N} {A \over 2} \left( {1 \over \sqrt{\rho_{k}}} + {1 \over \sqrt{\rho_{j}}} \right) \left\{ 2(r_{kj}-d) + 4 B^{2} (r_{kj}-d)^{3}\right\} \frac{\underline{r_{kj}}}{r_{kj}}~~. \nonumber\end{aligned}\end{split}\]
  7. Sutton-Chen force

    \[\begin{split}\begin{aligned} -\frac{\partial U_{1}}{\partial \underline{r_{k}}} =& -\sum_{j=1,j \ne k}^{N} n \epsilon \left( \frac{a}{r_{kj}} \right)^{n} \frac{\underline{r_{kj}}}{r_{kj}} \nonumber \\ -\frac{\partial U_{2}}{\partial \underline{r_{k}}} =& \sum_{j=1,j \ne k}^{N} \frac{m c \epsilon}{2} \left( {1 \over \sqrt{\rho_{k}}} + {1 \over \sqrt{\rho_{j}}} \right) \left( \frac{a}{r_{kj}} \right)^{m} \frac{\underline{r_{kj}}}{r_{kj}}~~.\end{aligned}\end{split}\]
  8. Gupta force

    \[\begin{split}\begin{aligned} -\frac{\partial U_{1}}{\partial \underline{r_{k}}} =& -\sum_{j=1,j \ne k}^{N} \frac{2 A p}{r_{0}} \exp \left( -p \frac{r_{kj}-r_{0}}{r_{0}} \right) \frac{\underline{r_{kj}}}{r_{kj}} \nonumber \\ -\frac{\partial U_{2}}{\partial \underline{r_{k}}} =& \sum_{j=1,j \ne k}^{N} \frac{B q_{kj}}{r_{0}} \left( {1 \over \sqrt{\rho_{k}}} + {1 \over \sqrt{\rho_{j}}} \right) \exp \left( -2 q_{kj} \frac{r_{kj}-r_{0}}{r_{0}} \right) \frac{\underline{r_{kj}}}{r_{kj}}~~.\end{aligned}\end{split}\]
  9. Many body perturbation component potential force

    \[\begin{split}\begin{aligned} -\frac{\partial U_{1}}{\partial \underline{r_{k}}} =& 0 \nonumber \\ -\frac{\partial U_{2}}{\partial \underline{r_{k}}} =& \sum_{j=1,j \ne k}^{N} \frac{m \epsilon}{2} \left( {1 \over \sqrt{\rho_{k}}} + {1 \over \sqrt{\rho_{j}}} \right) \frac{a}{r_{kj}^{m}} \frac{\underline{r_{kj}}}{r_{kj}}~~.\end{aligned}\end{split}\]

With the metal forces thus defined the contribution to be added to the atomic virial from each atom pair is then

\[{\cal W} = -\underline{r}_{ij} \cdot \underline{f}_{j}~~,\]

which equates to:

\[\begin{split}\begin{aligned} \Psi =& 3 V \frac{\partial U}{\partial V} \nonumber \\ \Psi =& {3 \over 2} V \sum_{i=1}^{N} \sum_{j \ne i}^{N} \frac{\partial V_{ij}(r_{ij})}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial V} + 3 V \sum_{i=1}^{N} \frac{\partial F(\rho_{i})}{\partial \rho_{i}} \frac{\partial \rho_{i}}{\partial V} = \Psi_{1} + \Psi_{2} \nonumber \\ & \frac{\partial r_{ij}}{\partial V} = \frac{\partial V^{1/3}s_{ij}}{\partial V} = {1 \over 3} V^{-2/3}s_{ij} = \frac{r_{ij}}{3 V} \nonumber \\ \Psi_{1} &=& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} \frac{\partial V_{ij}(r_{ij})}{\partial r_{ij}} r_{ij} \\ & \frac{\partial \rho_{i}}{\partial V} = \frac{\partial }{\partial V} \sum_{j=1, j \ne i}^{N} \rho_{ij}(r_{ij}) = \sum_{j=1, j \ne i}^{N} \frac{\partial \rho_{ij}(r_{ij})}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial V} = \frac{1}{3 V} \sum_{j=1, j \ne i}^{N} \frac{\partial \rho_{ij}(r_{ij})}{\partial r_{ij}} r_{ij} \nonumber \\ \Psi_{2} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} \left( \frac{\partial F(\rho_{i})}{\partial \rho_{i}} + \frac{\partial F(\rho_{j})}{\partial \rho_{j}} \right) \frac{\partial \rho_{ij}(r_{ij})}{\partial r_{ij}} r_{ij}~~. \nonumber\end{aligned}\end{split}\]
  1. EAM virial
    The same as above.
  2. EEAM virial
    The same as above.
  3. 2BEAM virial
    The same as above but with a second embedding contribution from the extra band complexity: \(\Psi_{2}=\Psi^{s}_{2}+\Psi^{d}_{2}\) !
  4. 2BEEAM virial
    The same as above but with a second embedding contribution from the extra band complexity: \(\Psi_{2}=\Psi^{s}_{2}+\Psi^{d}_{2}\) !
  5. Finnis-Sinclair virial

    \[\begin{split}\begin{aligned} \Psi_{1} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} \left\{ 2 (r_{ij}-c) (c_{0}+c_{1}r_{ij}+c_{2}r_{ij}^{2}) + (r_{ij}-c)^{2} (c_{1}+2c_{2}r_{ij}) \right\} r_{ij} \nonumber \\ \Psi_{2} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} {A \over 2} \left( {1 \over \sqrt{\rho_{k}}} + {1 \over \sqrt{\rho_{j}}} \right) \left\{ 2(r_{ij}-d) + 3 \beta \frac{(r_{ij}-d)^{2}}{d} \right\} r_{ij}a~~. \end{aligned}\end{split}\]
  6. Extended Finnis-Sinclair virial

    \[\begin{split}\begin{aligned} \Psi_{1} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} \left\{ 2 (r_{ij}-c) (c_{0}+c_{1}r_{ij}+c_{2}r_{ij}^{2}+c_{3}r_{ij}^{3}+c_{4}r_{ij}^{4}) + \right. \nonumber \\ & \phantom{xxxxxxxx} \left. (r_{ij}-c)^{2} (c_{1}+2c_{2}r_{ij}+3c_{3}r_{ij}^{2}+4c_{4}r_{ij}i^{3}) \right\} r_{ij} \\ \Psi_{2} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} {A \over 2} \left( {1 \over \sqrt{\rho_{k}}} + {1 \over \sqrt{\rho_{j}}} \right) \left\{ 2(r_{ij}-d) + 4 B^{2} (r_{ij}-d)^{3} \right\} r_{ij}a~~. \nonumber \end{aligned}\end{split}\]
  7. Sutton-Chen virial

    \[\begin{split}\begin{aligned} \Psi_{1} =& -{1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} n \epsilon \left( \frac{a}{r_{ij}} \right)^{n} \nonumber \\ \Psi_{2} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} \frac{m c \epsilon}{2} \left( \frac{\partial F(\rho_{i})}{\partial \rho_{i}} + \frac{\partial F(\rho_{j})}{\partial \rho_{j}} \right) \left( \frac{a}{r_{ij}} \right)^{m}~~. \end{aligned}\end{split}\]
  8. Gupta virial

    \[\begin{split}\begin{aligned} \Psi_{1} =& -\sum_{i=1}^{N} \sum_{j \ne i}^{N} \frac{A p}{r_{0}} \exp \left( -p \frac{r_{ij}-r_{0}}{r_{0}} \right) r_{ij} \nonumber \\ \Psi_{2} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} \frac{B q_{ij}}{r_{0}} \left( {1 \over \sqrt{\rho_{k}}} + {1 \over \sqrt{\rho_{j}}} \right) \exp \left( -2 q_{ij} \frac{r_{ij}-r_{0}}{r_{0}} \right) r_{ij}~~. \end{aligned}\end{split}\]
  9. Many body perturbation component virial

    \[\begin{split}\begin{aligned} \Psi_{1} =& 0 \nonumber \\ \Psi_{2} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{N} \frac{m \epsilon}{2} \left( \frac{\partial F(\rho_{i})}{\partial \rho_{i}} + \frac{\partial F(\rho_{j})}{\partial \rho_{j}} \right) \frac{a}{r_{ij}^{m}}~~. \end{aligned}\end{split}\]

The contribution to be added to the atomic stress tensor is given by

\[\sigma^{\alpha \beta} = r_{ij}^{\alpha} f_{j}^{\beta}~~,\]

where \(\alpha\) and \(\beta\) indicate the \(x,y,z\) components. The atomic stress tensor is symmetric.

The long-ranged correction for the DL_POLY_4 metal potential is in two parts. Firstly, by analogy with the short ranged potentials, the correction to the local density is

\[\begin{split}\begin{aligned} \rho_{i} =& \sum_{j=1, j \ne i}^{\infty} \rho_{ij}(r_{ij}) \nonumber \\ \rho_{i} =& \sum_{j=1, j \ne i}^{r_{ij}<r_{\rm met}} \rho_{ij}(r_{ij}) + \sum_{j=1, j \ne i}^{r_{ij} \ge r_{\rm met}} \rho_{ij}(r_{ij}) = \rho_{i}^{o} + \delta \rho_{i} \\ \delta \rho_{i} =& 4 \pi \bar{\rho} \int_{r_{\rm met}}^{\infty} \rho_{ij}(r) dr~~, \nonumber \end{aligned}\end{split}\]

where \(\rho_{i}^{o}\) is the uncorrected local density and \(\bar{\rho}\) is the mean particle density. Evaluating the integral part of the above equation yields:

  1. EAM density correction
    No long-ranged corrections apply beyond \(r_{\rm met}\).
  2. EEAM density correction
    No long-ranged corrections apply beyond \(r_{\rm met}\).
  3. 2BEAM density correction
    No long-ranged corrections apply beyond \(r_{\rm met}\).
  4. 2BEAM density correction
    No long-ranged corrections apply beyond \(r_{\rm met}\).
  5. Finnis-Sinclair density correction
    No long-ranged corrections apply beyond cutoffs \(c\) and \(d\).
  6. Extended Finnis-Sinclair density correction
    No long-ranged corrections apply beyond cutoffs \(c\) and \(d\).
  7. Sutton-Chen density correction

    \[\delta \rho_{i} = \frac{4 \pi \bar{\rho} a^{3}}{(m-3)} \left( \frac{a}{r_{\rm met}} \right)^{m-3}~~.\]
  8. Gupta density correction

    \[\delta \rho_{i} = \frac{2 \pi \bar{\rho} r_{0}}{q_{ij}} \left[ r_{\rm met}^{2} + 2 r_{\rm met} \left(\frac{r_{0}}{q_{ij}}\right) + 2 \left(\frac{r_{0}}{q_{ij}}\right)^{2} \right] \exp \left( -2 q_{ij} \frac{r_{\rm met}-r_{0}}{r_{0}}\right)~~.\]
  9. Many body perturbation component density correction

    \[\delta \rho_{i} = \frac{4 \pi \bar{\rho}}{(m-3)} \frac{a}{r_{\rm met}^{m-3}}~~.\]

The density correction is applied immediately after the local density is calculated. The pair term correction is obtained by analogy with the short ranged potentials and is

\[\begin{split}\begin{aligned} U_{1} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{\infty} V_{ij}(r_{ij}) \nonumber \\ U_{1} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{r_{ij}<r_{\rm met}} V_{ij}(r_{ij}) + {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{r_{ij} \ge r_{\rm met}} V_{ij}(r_{ij}) = U_{1}^{o} + \delta U_{1} \nonumber \\ \delta U_{1} =& 2 \pi N \bar{\rho} \int_{r_{\rm met}}^{\infty} V_{ij}(r) r^{2} dr \nonumber \\ U_{2} =& \sum_{i=1}^{N} F(\rho_{i}^{0} + \delta \rho_{i}) \\ U_{2} =& \sum_{i=1}^{N} F(\rho_{i}^{0}) + \sum_{i=1}^{N} \frac{\partial F(\rho_{i})_{0}}{\partial \rho_{i}} \delta \rho_{i} = U_{2}^{0} + \delta U_{2} \nonumber \\ \delta U_{2} =& 4 \pi \bar{\rho} \sum_{i=1}^{N} \frac{\partial F(\rho_{i})_{0}}{\partial \rho_{i}} \int_{r_{\rm met}}^{\infty} \rho_{ij}(r) r^{2} dr~~. \nonumber \end{aligned}\end{split}\]

Note

\(\delta U{2}\) is not required if \(\rho_{i}\) has already been corrected.

Evaluating the integral part of the above equations yields:

  1. EAM energy correction
    No long-ranged corrections apply beyond \(r_{\rm met}\).
  2. EEAM energy correction
    No long-ranged corrections apply beyond \(r_{\rm met}\).
  3. 2BEAM energy correction
    No long-ranged corrections apply beyond \(r_{\rm met}\).
  4. 2BEEAM energy correction
    No long-ranged corrections apply beyond \(r_{\rm met}\).
  5. Finnis-Sinclair energy correction
    No long-ranged corrections apply beyond cutoffs \(c\) and \(d\).
  6. Extended Finnis-Sinclair energy correction
    No long-ranged corrections apply beyond cutoffs \(c\) and \(d\).
  7. Sutton-Chen energy correction

    \[\begin{split}\begin{aligned} \delta U_{1} =& \frac{2 \pi N \bar{\rho} \epsilon a^{3}}{(n-3)} \left( \frac{a}{r_{\rm met}} \right)^{n-3} \nonumber \\ \delta U_{2} =& -\frac{4 \pi \bar{\rho} a^{3}}{(m-3)} \left( \frac{a}{r_{\rm met}} \right)^{m-3} \left< \frac{N c \epsilon}{2\sqrt{\rho_{i}^{0}}} \right>~~. \end{aligned}\end{split}\]
  8. Gupta energy correction

    \[\begin{split}\begin{aligned} \delta U_{1} =& \frac{4 \pi N \bar{\rho} A r_{0}}{p} \left[ r_{\rm met}^{2} + 2 r_{\rm met} \left(\frac{r_{0}}{p}\right) + 2 \left(\frac{r_{0}}{p}\right)^{2} \right] \times \nonumber \\ & \exp \left( -p \frac{r_{\rm met}-r_{0}}{r_{0}}\right) \nonumber \\ \delta U_{2} =& -\frac{2 \pi \bar{\rho} r_{0}}{q_{ij}} \left[ r_{\rm met}^{2} + 2 r_{\rm met} \left(\frac{r_{0}}{q_{ij}}\right) + 2 \left(\frac{r_{0}}{q_{ij}}\right)^{2} \right] \times \\ & \exp \left( -2 q_{ij} \frac{r_{\rm met}-r_{0}}{r_{0}}\right) \left< \frac{N B}{2\sqrt{\rho_{i}^{0}}} \right>~~. \nonumber \end{aligned}\end{split}\]
  9. Many body perturbation component energy correction

    \[\begin{split}\begin{aligned} \delta U_{1} =& 0 \nonumber \\ \delta U_{2} =& -\frac{4 \pi \bar{\rho}}{(m-3)} \frac{a}{r_{\rm met}^{m-3}} \left< \frac{N \epsilon}{2\sqrt{\rho_{i}^{0}}} \right>~~. \end{aligned}\end{split}\]

To estimate the virial correction we assume the corrected local densities are constants (i.e. independent of distance - at least beyond the range \(r_{\rm met}\)). This allows the virial correction to be computed by the methods used in the short ranged potentials:

\[\begin{split}\begin{aligned} \Psi_{1} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{\infty} \frac{\partial V_{ij}(r_{ij})}{\partial r_{ij}} r_{ij} \nonumber \\ \Psi_{1} =& {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{r_{ij}<r_{\rm met}} \frac{\partial V_{ij}(r_{ij})}{\partial r_{ij}} r_{ij} + {1 \over 2} \sum_{i=1}^{N} \sum_{j \ne i}^{r_{ij} \ge r_{\rm met}} \frac{\partial V_{ij}(r_{ij})}{\partial r_{ij}} r_{ij} = \Psi_{1}^{0} + \delta \Psi_{1} \nonumber \\ \delta \Psi_{1} =& 2 \pi N \bar{\rho} \int_{r_{\rm met}}^{\infty} \frac{\partial V_{ij}(r)}{\partial r_{ij}} r^{3} dr \nonumber \\ \Psi_{2} =& \sum_{i=1}^{N} \frac{\partial F(\rho_{i})}{\partial \rho_{i}} \sum_{j \ne i}^{\infty} \frac{\partial \rho_{ij}(r_{ij})}{\partial r_{ij}} r_{ij} \\ \Psi_{2} =& \sum_{i=1}^{N} \frac{\partial F(\rho_{i})}{\partial \rho_{i}} \sum_{j \ne i}^{r_{ij}<r_{\rm met}} \frac{\partial \rho_{ij}(r_{ij})}{\partial r_{ij}} r_{ij} + \sum_{i=1}^{N} \frac{\partial F(\rho_{i})}{\partial \rho_{i}} \sum_{j \ne i}^{r_{ij} \ge r_{\rm met}} \frac{\partial \rho_{ij}(r_{ij})}{\partial r_{ij}} r_{ij} = \Psi_{2}^{0} + \delta \Psi_{2} \nonumber \\ \delta \Psi_{2} =& 4 \pi \bar{\rho} \sum_{i=1}^{N} \frac{\partial F(\rho_{i})}{\partial \rho_{i}} \int_{r_{\rm met}}^{\infty} \frac{\partial \rho_{ij}(r)}{\partial r} r^{3} dr~~. \nonumber \end{aligned}\end{split}\]

Evaluating the integral part of the above equations yields:

  1. EAM virial correction
    No long-ranged corrections apply beyond \(r_{\rm met}\).
  2. EEAM virial correction
    No long-ranged corrections apply beyond \(r_{\rm met}\).
  3. 2BEAM virial correction
    No long-ranged corrections apply beyond \(r_{\rm met}\).
  4. 2BEEAM virial correction
    No long-ranged corrections apply beyond \(r_{\rm met}\).
  5. Finnis-Sinclair virial correction
    No long-ranged corrections apply beyond cutoffs \(c\) and \(d\).
  6. Extended Finnis-Sinclair virial correction
    No long-ranged corrections apply beyond cutoffs \(c\) and \(d\).
  7. Sutton-Chen virial correction

    \[\begin{split}\begin{aligned} \delta \Psi_{1} =& -n \frac{2 \pi N \bar{\rho} \epsilon a^{3}}{(n-3)} \left( \frac{a}{r_{\rm met}} \right)^{n-3} \nonumber \\ \delta \Psi_{2} =& m \frac{4 \pi \bar{\rho} a^{3}}{(m-3)} \left( \frac{a}{r_{\rm met}} \right)^{m-3} \left< \frac{N c \epsilon}{2\sqrt{\rho_{i}^{0}}} \right>~~.\end{aligned}\end{split}\]
  8. Gupta virial correction

    \[\begin{split}\begin{aligned} \delta \Psi_{1} =& -\frac{p}{r_{0}} \frac{4 \pi N \bar{\rho} A r_{0}}{p} \left[ r_{\rm met}^{3} + 3 r_{\rm met}^{2} \left(\frac{r_{0}}{p}\right) + 6 r_{\rm met} \left(\frac{r_{0}}{p}\right)^{2} + 6 \left(\frac{r_{0}}{p}\right)^{3} \right] \times \nonumber \\ & \exp \left( -p \frac{r_{\rm met}-r_{0}}{r_{0}}\right) \nonumber \\ \delta \Psi_{2} =& \frac{q_{ij}}{r_{0}} \frac{2 \pi \bar{\rho} r_{0}}{q_{ij}} \left[ r_{\rm met}^{3} + 3 r_{\rm met}^{2} \left(\frac{r_{0}}{q_{ij}}\right) + 6 r_{\rm met} \left(\frac{r_{0}}{q_{ij}}\right)^{2} + 6 \left(\frac{r_{0}}{q_{ij}}\right)^{3} \right] \times \\ & \exp \left( -2 q_{ij} \frac{r_{\rm met}-r_{0}}{r_{0}}\right) \left< \frac{N B}{2\sqrt{\rho_{i}^{0}}} \right>~~. \nonumber \end{aligned}\end{split}\]
  9. Many body perturbation component virial correction

    \[\begin{split}\begin{aligned} \delta \Psi_{1} =& 0 \nonumber \\ \delta \Psi_{2} =& m \frac{4 \pi \bar{\rho}}{(m-3)} \frac{a}{r_{\rm met}^{m-3}} \left< \frac{N \epsilon}{2\sqrt{\rho_{i}^{0}}} \right>~~. \end{aligned}\end{split}\]

In the energy and virial corrections we have used the approximation:

\[\sum_{i}^{N}\rho_{i}^{-1/2} = \frac{N}{<\rho_{i}^{1/2}>}~~,\]

where \(<\rho_{i}^{1/2}>\) is regarded as a constant of the system.

In DL_POLY_4 the metal forces are handled by the routine metal_forces. The local density is calculated by the routines metal_ld_collect_eam, metal_ld_collect_fst, metal_ld_compute, metal_ld_set_halo and metal_ld_export. The long-ranged corrections are calculated by metal_lrc. Reading and generation of EAM table data from TABEAM is handled by metal_table_read and metal_table_derivatives.

Notes on the Treatment of Alloys

The distinction to be made between EAM and FS potentials with regard to alloys concerns the mixing rules for unlike interactions. Starting with equations (73) and (74), it is clear that we require mixing rules for terms \(V_{ij}(r_{ij})\) and \(\rho_{ij}(r_{ij})\) when atoms \(i\) and \(j\) are of different kinds. Thus two different metals \(A\) and \(B\) we can distinguish 4 possible variants of each:

\[V^{AA}_{ij}(r_{ij}),~V^{BB}_{ij}(r_{ij}),~V^{AB}_{ij}(r_{ij}), ~V^{BA}_{ij}(r_{ij})\]

and

\[\rho^{AA}_{ij}(r_{ij}),~\rho^{BB}_{ij}(r_{ij}),~\rho^{AB}_{ij}(r_{ij}), ~\rho^{BA}_{ij}(r_{ij})~~.\]

These forms recognise that the contribution of a type \(A\) atom to the potential of a type \(B\) atom may be different from the contribution of a type \(B\) atom to the potential of a type \(A\) atom. In both EAM 47 and FS 77 cases it turns out that

\[V^{BA}_{ij}(r_{ij})=V^{BA}_{ij}(r_{ij})~~,\]

though the mixing rules are different in each case (beware!). This has the following implications to densities of mixtures for different potential frameworks:

  • EAM case - it is required that 47:

    \[\begin{split}\begin{aligned} \rho^{AB}_{ij}(r_{ij})=&\rho^{BB}_{ij}(r_{ij}) \nonumber \\ \rho^{BA}_{ij}(r_{ij})=&\rho^{AA}_{ij}(r_{ij})~~, \end{aligned}\end{split}\]

    which means that an atom of type \(A\) contributes the same density to the environment of an atom of type \(B\) as it does to an atom of type \(A\), and vice versa.

  • EEAM case - all densities can be different 40,52:

    \[\rho^{AA}_{ij}(r_{ij}) \neq \rho^{BB}_{ij}(r_{ij}) \neq \rho^{AB}_{ij}(r_{ij}) \neq \rho^{BA}_{ij}(r_{ij})~~!\]
  • 2BEAM case - similarly to the EAM case it is required that:

    \[\begin{split}\begin{aligned} {\rho^{d}_{ij}}^{AB}(r_{ij})=&{\rho^{d}_{ij}}^{BB}(r_{ij}) \nonumber \\ {\rho^{d}_{ij}}^{BA}(r_{ij})=&{\rho^{d}_{ij}}^{AA}(r_{ij})~~,\end{aligned}\end{split}\]

    for the \(d\)-band densities, whereas for the \(s\)-band ones:

    \[{\rho^{s}_{ij}}^{BA}(r_{ij}) = {\rho^{s}_{ij}}^{AB}(r_{ij})~~,\]

    which means that an atom of type \(A\) contributes the same \(s\) density to the environment of an atom of type \(B\) as an atom of type \(B\) to an environment of an atom of type \(A\). However, in general:

    \[\begin{split}{\rho^{s}_{ij}}^{AA}(r_{ij}) \neq {\rho^{s}_{ij}}^{BB}(r_{ij}) \neq {\rho^{s}_{ij}}^{AB}(r_{ij})~~. \\\end{split}\]
  • 2BEEAM case - similarly to the EEAM case all \(s\) and \(d\) densities can be different:

    \[\begin{split}\begin{aligned} {\rho^{s}_{ij}}^{AA}(r_{ij}) \neq {\rho^{s}_{ij}}^{BB}(r_{ij}) \neq {\rho^{s}_{ij}}^{AB}(r_{ij}) \neq {\rho^{s}_{ij}}^{BA}(r_{ij}) \nonumber \\ {\rho^{d}_{ij}}^{AA}(r_{ij}) \neq {\rho^{d}_{ij}}^{BB}(r_{ij}) \neq {\rho^{d}_{ij}}^{AB}(r_{ij}) \neq {\rho^{d}_{ij}}^{BA}(r_{ij}) ~~.\end{aligned}\end{split}\]
  • FS case - here a different rule applies 77:

    \[\rho^{AB}_{ij}(r_{ij})=(\rho^{AA}_{ij}(r_{ij})~\rho^{BB}_{ij}(r_{ij}))^{1/2}\]

    so that atoms of type \(A\) and \(B\) contribute the same densities to each other, but not to atoms of the same type.

The above rules have the following consequences to the specifications of these potentials in the DL_POLY_4 FIELD file for an alloy composed of \(n\) different metal atom types both the EAM types and FS types of potentials require the specification of \(n(n+1)/2\) pair functions \(V^{AB}_{ij}(r_{ij})\). However, the its only the simple EAM type together with all the FS types that require only \(n\) density functions \(\rho^{AA}_{ij}(r_{ij})\), whereas the EEAM class requires all the cross functions \(\rho^{AB}_{ij}(r_{ij})\) possible or \(n^{2}\) in total! In addition to the \(n(n+1)/2\) pair functions and \(n\) or \(n^{2}\) density functions both the EAM and EEAM potentials require further specification of \(n\) functional forms of the density dependence (i.e. the embedding function \(F(\rho_{i})\) in equation (73). The matter is further complicated when the 2BEAM type of potential is used with the extra specification of \(n\) embedding functions and \(n(n+1)/2\) density functions for the \(s\)-band. Similarly, in the 2BEEAM an extra \(n\) embedding functions and \(n^{2}\) density functions for the \(s\)-band are required.

It is worth noting that in the 2BEAM and 2BEEAM the \(s\)-band contribution is usually only for the alloy component, so that local concentrations of a single element revert to the standard EAM or EEAM! In such case, the densities functions must be zeroed in the DL_POLY_4 TABEAM file.

For EAM, EEAM, 2BEAM and 2BEEAM potentials all the functions are supplied in tabular form via the table file TABEAM (see section The TABEAM File) to which DL_POLY_4 is redirected by the FIELD file data. The FS potentials are defined via the necessary parameters in the FIELD file.

Tersoff Potentials

The Tersoff 109 potential is is a bond-order potential, developed to be used in multi-component covalent systems by an effective coupling of two-body and higher many-body correlations into one model. The central idea is that in real systems, the strength of each bond depends on the local environment, i.e. an atom with many neighbors forms weaker bonds than an atom with few neighbors. Effectively, it is a pair potential the strength of which depends on the environment. At the present there are two versions of this potential available in : ters and kihs. In these particular implementations ters has 11 atomic and 2 bi-atomic parameters whereas kihs 51 has 16 atomic parameters. The energy is modelled as a sum of pair-like interactions, where the coefficient of the attractive term in the pair-like potential (which plays the role of a bond order) depends on the local environment giving a many-body potential.

The form of the Tersoff potential is: (ters)

\[U_{ij} = f_{C}(r_{ij})~[f_{R}(r_{ij}) - \gamma_{ij}~f_{A}(r_{ij})]~~,\]

where \(f_{R}\) and \(f_{A}\) are the repulsive and attractive pair potential respectively:

\[f_{R}(r_{ij}) = A_{ij}~\exp(- a_{ij}~r_{ij})~~,~~ f_{A}(r_{ij}) = B_{ij}~\exp(- b_{ij}~r_{ij})\]

and \(f_{C}\) is a smooth cutoff function with parameters \(R\) and \(S\) so chosen that to include the first-neighbor shell:

  • ters:

    \[\begin{split}f_{C}(r_{ij}) = \left\{ \begin{array} {l@{\quad:\quad}l} 1 & r_{ij} < R_{ij} \\ \frac{1}{2} + \frac{1}{2} \cos \left[\pi~\frac{r_{ij}-R_{ij}}{S_{ij}-R_{ij}}\right] & R_{ij} < r_{ij} < S_{ij} \\ 0 & r_{ij} > S_{ij} \end{array} \right.\end{split}\]
  • kihs - here \(f_{C}\) is modified to a have continuous second-order differential:

    \[\begin{split}f_{C}(r_{ij}) = \left\{ \begin{array} {l@{\quad:\quad}l} 1 & r_{ij} < R_{ij} \\ \frac{1}{2} + \frac{9}{16} \cos \left[\pi~\frac{r_{ij}-R_{ij}}{S_{ij}-R_{ij}}\right] - \frac{1}{16} \cos \left[3 \pi~\frac{r_{ij}-R_{ij}}{S_{ij}-R_{ij}}\right] & R_{ij} < r_{ij} < S_{ij} \\ 0 & r_{ij} > S_{ij}~~. \end{array} \right.\end{split}\]

\(\gamma_{ij}\) expresses a dependence that can accentuate or diminish the attractive force relative to the repulsive force, according to the local environment, such that:

  • ters:

    \[\begin{split}\begin{aligned} \gamma_{ij} &=& \chi_{ij}~(1 + {\beta_{i}}^{\eta_{i}}~{\cal{L}}_{ij}^{\eta_{i}})^{-\frac{1}{2\eta_{i}}} \nonumber \\ {\cal{L}}_{ij} &=& \sum_{k \neq i,j} f_{C}(r_{ik})~\omega_{ik}~g(\theta_{ijk}) \\ g(\theta_{ijk}) &=& 1 + \frac{c_{i}^{2}}{d_{i}^{2}} - \frac{c_{i}^{2}}{d_{i}^{2} + (h_{i} - \cos\theta_{ijk})^{2}} \nonumber\end{aligned}\end{split}\]
  • kihs:

    \[\begin{split}\begin{aligned} \gamma_{ij} &=& (1 + {\cal{L}}_{ij}^{\eta_{i}})^{-\delta_{i}} \nonumber \\ {\cal{L}}_{ij} &=& \sum_{k \neq i,j} f_{C}(r_{ik})~g(\theta_{ijk})~ \overbrace{\exp \left[\alpha_{i} (r_{ij}-r_{ik})^{\beta_{i}}\right]}^{\omega_{ik}} \nonumber \\ g(\theta_{ijk}) &=& c_{1i} + {g}_{o}(\theta_{ijk})~{g}_{a}(\theta_{ijk}) \\ {g}_{o}(\theta_{ijk}) &=& \frac{c_{2i}~(h_{i} - \cos\theta_{ijk})^{2}} {c_{3i} + (h_{i} - \cos\theta_{ijk})^{2}} \nonumber \\ {g}_{a}(\theta_{ijk}) &=& 1 + {c_{4i}~\exp \left[-c_{5i}~(h_{i} - \cos\theta_{ijk})^{2}\right]}~~, \nonumber\end{aligned}\end{split}\]

where the term \({\cal{L}}_{ij}\) defines the effective coordination number of atom \(i\) i.e. the number of nearest neighbors, taking into account the relative distance of the two neighbors, \(i\) and \(k\), \(r_{ij}-r_{ik}\), and the bond angle, \(\theta_{ijk}\), between them with respect to the central atom \(i\). The function \(g(\theta)\) has a minimum for \(h_{i}=\cos(\theta_{ijk})\), the parameter \(d_{i}\) in ters and \(c_{3i}\) in kihs determines how sharp the dependence on angle is, whereas the rest express the strength of the angular effect. Further mixed parameters are defined as:

\[\begin{split}\begin{aligned} a_{ij} = (a_{i} + a_{j})/2&,&~b_{ij} = (b_{i} + b_{j})/2 \nonumber \\ A_{ij} = (A_{i} A_{j})^{1/2}&,&~B_{ij} = (B_{i} B_{j})^{1/2} \\ R_{ij} = (R_{i} R_{j})^{1/2}&,&~S_{ij} = (S_{i} S_{j})^{1/2}~~. \nonumber\end{aligned}\end{split}\]

Singly subscripted parameters, such as \(a_{i}\) and \(\eta_{i}\), depend only on the type of atom.

For ters the chemistry between different atom types is locked in the two sets bi-atomic parameters \(\chi_{ij}\) and \(\omega_{ij}\):

\[\begin{split}\begin{aligned} \chi_{ii}~=~1&,&~\chi_{ij}~=~\chi_{ji} \nonumber \\ \omega_{ii}~=~1&,&~\omega_{ij}~=~\omega_{ji}~~,\end{aligned}\end{split}\]

which define only one independent parameter each per pair of atom types. The \(\chi\) parameter is used to strengthen or weaken the heteropolar bonds, relative to the value obtained by simple interpolation. The \(\omega\) parameter is used to permit greater flexibility when dealing with more drastically different types of atoms.

The force on an atom \(\ell\) derived from this potential is formally calculated with the formula:

\[f_{\ell}^{\alpha} = -\frac{\partial}{\partial r_{\ell}^{\alpha}} E_{\tt tersoff} = \frac{1}{2} \sum_{i}\sum_{j \neq i} -\frac{\partial}{\partial r_{\ell}^{\alpha}} U_{ij}~~,\]

with atomic label \(\ell\) being one of \(i,j,k\) and \(\alpha\) indicating the \(x,y,z\) component. The derivative after the summation is worked out as

\[-\frac{\partial U_{ij}}{\partial r_{\ell}^{\alpha}} = -\frac{\partial}{\partial r_{\ell}^{\alpha}} f_{C}(r_{ij}) f_{R}(r_{ij}) + \gamma_{ij} \frac{\partial}{\partial r_{\ell}^{\alpha}} f_{C}(r_{ij}) f_{A}(r_{ij}) + f_{C}(r_{ij}) f_{A}(r_{ij}) \frac{\partial}{\partial r_{\ell}^{\alpha}} \gamma_{ij}~~,\]

with the contributions from the first two terms being:

\[\begin{split}\begin{aligned} -\frac{\partial}{\partial r_{\ell}^{\alpha}} f_{C}(r_{ij}) f_{R}(r_{ij})=& -\left\{ f_{C}(r_{ij}) \frac{\partial}{\partial r_{ij}} f_{R}(r_{ij}) + f_{R}(r_{ij}) \frac{\partial}{\partial r_{ij}} f_{C}(r_{ij}) \right\} \nonumber \\ &\times ~\left\{ \delta_{j \ell} \frac{r_{i \ell}^{\alpha}}{r_{i \ell}} - \delta_{i \ell} \frac{r_{\ell j}^{\alpha}}{r_{\ell j}} \right\} \end{aligned}\end{split}\]
\[\begin{split}\begin{aligned} \gamma_{ij} \frac{\partial}{\partial r_{\ell}^{\alpha}} f_{C}(r_{ij}) f_{A}(r_{ij})=& \gamma_{ij} \left\{ f_{C}(r_{ij}) \frac{\partial}{\partial r_{ij}} f_{A}(r_{ij}) + f_{A}(r_{ij}) \frac{\partial}{\partial r_{ij}} f_{C}(r_{ij}) \right\} \nonumber \\ &\times ~\left\{ \delta_{j \ell} \frac{r_{i \ell}^{\alpha}}{r_{i \ell}} - \delta_{i \ell} \frac{r_{\ell j}^{\alpha}}{r_{\ell j}} \right\}~~,\end{aligned}\end{split}\]

and from the third (angular) term:

  • ters:

    \[\begin{split}\begin{aligned} f_{C}(r_{ij}) f_{A}(r_{ij}) \frac{\partial}{\partial r_{\ell}^{\alpha}} \gamma_{ij}=& f_{C}(r_{ij}) f_{A}(r_{ij})~\chi_{ij}~~ \nonumber \\ &\times \left( -\frac{1}{2} \right) \left( 1 + {\beta_{i}}^{\eta_{i}}~{\cal{L}}_{ij}^{\eta_{i}} \right)^{-\frac{1}{2 \eta_{i}} - 1} {\beta_{i}}^{\eta_{i}}~{\cal{L}}_{ij}^{\eta_{i}-1} \frac{\partial}{\partial r_{\ell}^{\alpha}} {\cal{L}}_{ij}~~,\end{aligned}\end{split}\]

    where

    \[\frac{\partial}{\partial r_{\ell}^{\alpha}} {\cal{L}}_{ij} = \frac{\partial}{\partial r_{\ell}^{\alpha}} \sum_{k \neq i,j} \omega_{ik}~f_{C}(r_{ik})~g(\theta_{ijk})~~. \nonumber\]

    The angular term can have three different contributions depending on the index of the particle participating in the interaction:

    \[\begin{split}\begin{aligned} \ell~=~i~&:&~\frac{\partial}{\partial r_{i}^{\alpha}} {\cal{L}}_{ij} = \sum_{k \neq i,j} \omega_{ik} \left[ g(\theta_{ijk}) \frac{\partial}{\partial r_{i}^{\alpha}} f_{C}(r_{ik}) + f_{C}(r_{ik}) \frac{\partial}{\partial r_{i}^{\alpha}} g(\theta_{ijk}) \right] \nonumber \\ \ell~=~j~&:&~\frac{\partial}{\partial r_{j}^{\alpha}} {\cal{L}}_{ij} = \sum_{k \neq i,j} \omega_{ik} ~f_{C}(r_{ik}) \frac{\partial}{\partial r_{j}^{\alpha}} g(\theta_{ijk}) \\ \ell~\neq~i,j~&:&~\frac{\partial}{\partial r_{\ell}^{\alpha}} {\cal{L}}_{ij} = \omega_{i \ell} \left[ g(\theta_{ij \ell}) \frac{\partial}{\partial r_{\ell}^{\alpha}} f_{C}(r_{i \ell}) + f_{C}(r_{i \ell}) \frac{\partial}{\partial r_{\ell}^{\alpha}} g(\theta_{ij \ell}) \right]~~, \nonumber\end{aligned}\end{split}\]
  • kihs:

    \[\begin{split}\begin{aligned} f_{C}(r_{ij}) f_{A}(r_{ij}) \frac{\partial}{\partial r_{\ell}^{\alpha}} \gamma_{ij}&=& f_{C}(r_{ij}) f_{A}(r_{ij})~\times ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \nonumber \\ & & \left(-\delta_{i}~\eta_{i}\right) \left( 1 + {\cal{L}}_{ij}^{\eta_{i}}\right)^{-\delta_{i} - 1} {\cal{L}}_{ij}^{\eta_{i}-1} \frac{\partial}{\partial r_{\ell}^{\alpha}} {\cal{L}}_{ij}~~,\end{aligned}\end{split}\]

    where

    \[\frac{\partial}{\partial r_{\ell}^{\alpha}} {\cal{L}}_{ij} = \frac{\partial}{\partial r_{\ell}^{\alpha}} \sum_{k \neq i,j} \omega_{ik}(r_{ij},r_{ik})~f_{C}(r_{ik})~g(\theta_{ijk})~~. \nonumber\]

    It is worth noting that the derivative of \(\omega_{ik}\):

    \[\frac{\partial}{\partial r_{\ell}^{\alpha}} \omega_{ik} = \alpha_{i}~\beta_{i}~(r_{ij}-r_{ik})^{\beta_{i}-1}~\omega_{ik}~ \left\{ (\delta_{\ell j}-\delta_{\ell i}) \frac{r_{ij}^{\alpha}}{r_{ij}}- (\delta_{\ell k}-\delta_{\ell i}) \frac{r_{ik}^{\alpha}}{r_{ik}} \right\}~~,\]

    now has three different contributions depending on the index of the particle participating in the interaction! Hence the angular term’s derivative is more elaborate to express than the one in the ters case.

The derivative of \(g(\theta_{ijk})\) is worked out in the following manner:

\[\frac{\partial}{\partial r_{\ell}^{\alpha}} g(\theta_{ijk}) = \frac{\partial g(\theta_{ijk})}{\partial \theta_{ijk}}~ \frac{-1}{\sin \theta_{ijk}}~\frac{\partial}{\partial r_{\ell}^{\alpha}} \left\{ \frac{\underline{r}_{ij} \cdot \underline{r}_{ik}} {r_{ij}~r_{ik}} \right\}~~,\]

where

\[\begin{split}\begin{aligned} \frac{\partial g(\theta_{ijk})}{\partial \theta_{ijk}}=& \frac{2~c_{i}^{2}(h_{i} - \cos \theta_{ijk})~\sin \theta_{ijk}} {[d_{i}^{2} + (h_{i} - \cos \theta_{ijk})^{2}]^{2}} \\ \frac{\partial}{\partial r_{\ell}^{\alpha}} \left\{\frac{\underline{r}_{ij}\cdot\underline{r}_{ik}}{r_{ij}r_{ik}}\right\}=& (\delta_{\ell j}-\delta_{\ell i})\frac{r_{ik}^{\alpha}}{r_{ij}r_{ik}} + (\delta_{\ell k}-\delta_{\ell i})\frac{r_{ij}^{\alpha}}{r_{ij}r_{ik}} \nonumber \\ & - \cos(\theta_{jik}) \left\{(\delta_{\ell j}-\delta_{\ell i})\frac{r_{ij}^{\alpha}}{r_{ij}^{2}}+ (\delta_{\ell k}-\delta_{\ell i})\frac{r_{ik}^{\alpha}}{r_{ik}^{2}}\right\}~~.\end{aligned}\end{split}\]

The contribution to be added to the atomic virial can be derived as

\[\begin{split}\begin{aligned} {\cal W} = & 3V \frac{\partial E_{\tt tersoff}}{\partial V} = \frac{3~V}{2} \sum_{i} \sum_{j \neq i} \frac{\partial U_{ij}}{\partial V} = \sum_{i} \underline{r_{i}} \cdot \underline{f_{i}} \\ =& \frac{1}{2}\sum_{i} \sum_{j \neq i} -\left( \underline{r_{ij}} \cdot \underline{f_{ij}} + \underline{r_{ik}} \cdot \underline{f_{ik}} \right) = \frac{1}{2}\sum_{i} \sum_{j \neq i} \left(\frac{\partial U_{ij}}{\partial r_{ij}} \cdot \underline{r_{ij}} + \frac{\partial U_{ik}}{\partial r_{ik}} \cdot \underline{r_{ik}}\right) \nonumber\end{aligned}\end{split}\]
  • ters:

    \[\begin{split}\begin{aligned} {\cal W} =& \frac{1}{2} \sum_{i} \sum_{j \neq i} \left\{ \left[ \frac{\partial}{\partial r_{ij}} f_{C}(r_{ij}) f_{R}(r_{ij}) - \gamma_{ij} \frac{\partial}{\partial r_{ij}} f_{C}(r_{ij}) f_{A}(r_{ij}) \right] r_{ij} \right. \nonumber \\ & \phantom{xxxxxxxxx} -\left( -\frac{1}{2} \right) f_{C}(r_{ij}) f_{A}(r_{ij})~\chi_{ij} \left( 1 + {\beta_{i}}^{\eta_{i}}~{\cal{L}}_{ij}^{\eta_{i}} \right)^{-\frac{1}{2 \eta_{i}} - 1} {\beta_{i}}^{\eta_{i}}~{\cal{L}}_{ij}^{\eta_{i}-1} \\ & \phantom{xxxxxxxxx}\times \left. \sum_{k \neq i,j} \omega_{ik}~g(\theta_{ijk}) \left[ \frac{\partial}{\partial r_{ik}} f_{C}(r_{ik}) \right] r_{ik} \right\}~~, \nonumber \end{aligned}\end{split}\]
  • hiks:

    \[\begin{split}\begin{aligned} {\cal W} =& \frac{1}{2} \sum_{i} \sum_{j \neq i} \left\{ \left[ \frac{\partial}{\partial r_{ij}} f_{C}(r_{ij}) f_{R}(r_{ij}) - \gamma_{ij} \frac{\partial}{\partial r_{ij}} f_{C}(r_{ij}) f_{A}(r_{ij}) \right] r_{ij} \right. \nonumber \\ & \phantom{xxxxxxxxx} -\left(-\delta_{i}~\eta_{i}\right) f_{C}(r_{ij}) f_{A}(r_{ij})~\chi_{ij} \left( 1 + {\cal{L}}_{ij}^{\eta_{i}} \right)^{-\delta_{i} - 1} {\cal{L}}_{ij}^{\eta_{i}-1} \\ & \phantom{xxxxxxxxx}\times \left. \sum_{k \neq i,j} \omega_{ik} \left[r_{ik}~g(\theta_{ijk})\frac{\partial}{\partial r_{ik}} f_{C}(r_{ik}) + \alpha_{i}~\beta_{i}~(r_{ij}-r_{ik})^{\beta_{i}}f_{C}(r_{ik}) \right] \right\}~~. \nonumber \end{aligned}\end{split}\]

The contribution to be added to the atomic stress tensor is given by

\[\sigma^{\alpha \beta} = -r_{i}^{\alpha} f_{i}^{\beta}~~,\]

where \(\alpha\) and \(\beta\) indicate the \(x,y,z\) components. The stress tensor is symmetric.

Interpolation arrays, vter and gter (set up in tersoff_generate) - similar to those in van der Waals interactions (Section 3.1), are used in the calculation of the Tersoff forces, virial and stress.

The Tersoff potentials are very short ranged, typically of order \(3\) Å. This property, plus the fact that Tersoff potentials (two- and three-body contributions) scale as \(N^{3}\), where \(N\) is the number of particles, makes it essential that these terms are calculated by the link-cell method 27.

DL_POLY_4 applies no long-ranged corrections to the Tersoff potentials. In DL_POLY_4 Tersoff forces are handled by the routine tersoff_forces.

Three-Body Potentials

The three-body potentials in DL_POLY_4 are mostly valence angle forms. (They are primarily included to permit simulation of amorphous materials e.g. silicate glasses.) However, these have been extended to include the Dreiding 61 hydrogen bond. The potential forms available are as follows:

  1. Harmonic: (harm)

    (77)\[U(\theta_{jik}) = {k \over 2} (\theta_{jik} - \theta_{0})^{2}\]
  2. Truncated harmonic: (thrm)

    (78)\[U(\theta_{jik}) = {k \over 2} (\theta_{jik} - \theta_{0})^{2} \exp[-(r_{ij}^{8} + r_{ik}^{8}) / \rho^{8}]\]
  3. Screened Harmonic: (shrm)

    (79)\[U(\theta_{jik}) = {k \over 2} (\theta_{jik} - \theta_{0})^{2} \exp[-(r_{ij} / \rho_{1} + r_{ik} / \rho_{2})]\]
  4. Screened Vessal 120: (bvs1)

    (80)\[\begin{split}\begin{aligned} U(\theta_{jik}) =& {k \over 8(\theta_{0}-\pi)^{2}} \left\{ \left[ (\theta_{0} -\pi)^{2} -(\theta_{jik}-\pi)^{2} \right]^{2} \right\} \nonumber \\ & \times\exp[-(r_{ij} / \rho_{1} + r_{ik} / \rho_{2})]\end{aligned}\end{split}\]
  5. Truncated Vessal 104: (bvs2)

    (81)\[\begin{split}\begin{aligned} U(\theta_{jik})=& k~\big[ \theta_{jik}^a (\theta_{jik}-\theta_0)^{2} (\theta_{jik}+\theta_{0}-2\pi)^{2} \nonumber \\ & - {a \over 2} \pi^{a-1} (\theta_{jik}-\theta_{0})^{2}(\pi - \theta_{0})^{3}\big]~\exp[-(r_{ij}^{8} + r_{ik}^{8}) / \rho^{8}]\end{aligned}\end{split}\]
  6. Dreiding hydrogen bond 61: (hbnd)

    (82)\[U(\theta_{jik}) = D_{hb}~\cos^{4}(\theta_{jik})~[5(R_{hb}/r_{jk})^{12}-6(R_{hb}/r_{jk})^{10}]\]

Note

For the hydrogen bond, the hydrogen atom must be the central atom.

Several of these functions are identical to those appearing in the intra-molecular valence angle descriptions above. There are significant differences in implementation however, arising from the fact that the three-body potentials are regarded as inter-molecular. Firstly, the atoms involved are defined by atom types, not specific indices. Secondly, there are no excluded atoms arising from the three-body terms. (The inclusion of other potentials, for example pair potentials, may in fact be essential to maintain the structure of the system.)

The three-body potentials are very short ranged, typically of order \(3\) Å. This property, plus the fact that three-body potentials scale as \(N^{4}\), where \(N\) is the number of particles, makes it essential that these terms are calculated by the link-cell method 27.

The calculation of the forces, virial and stress tensor as described in the section valence angle potentials above.

DL_POLY_4 applies no long-ranged corrections to the three-body potentials. The three-body forces are calculated by the routine three_body_forces.

Four-Body Potentials

The four-body potentials in DL_POLY_4 are entirely inversion angle forms, primarily included to permit simulation of amorphous materials (particularly borate glasses). The potential forms available in DL_POLY_4 are as follows:

  1. Harmonic: (harm)

    (83)\[U(\phi_{ijkn}) = {k \over 2}~(\phi_{ijkn} - \phi_{0})^{2}\]
  2. Harmonic cosine: (hcos)

    (84)\[U(\phi_{ijkn}) = {k \over 2}~(\cos(\phi_{ijkn}) - \cos(\phi_{0}))^{2}\]
  3. Planar potential: (plan)

    (85)\[U(\phi_{ijkn}) = A~[ 1 - \cos(\phi_{ijkn})]\]

These functions are identical to those appearing in the intra-molecular inversion angle descriptions above. There are significant differences in implementation however, arising from the fact that the four-body potentials are regarded as inter-molecular. Firstly, the atoms involved are defined by atom types, not specific indices. Secondly, there are no excluded atoms arising from the four-body terms. (The inclusion of other potentials, for example pair potentials, may in fact be essential to maintain the structure of the system.)

The four-body potentials are very short ranged, typically of order \(3~\)Å. This property, plus the fact that four-body potentials scale as \(N^{4}\), where \(N\) is the number of particles, makes it essential that these terms are calculated by the link-cell method 27.

The calculation of the forces, virial and stress tensor described in the section on inversion angle potentials above.

DL_POLY_4 applies no long-ranged corrections to the four body potentials. The four-body forces are calculated by the routine four_body_forces.