Bibliography

[1]

G. J. Ackland and S. K. Reed. Two-band second moment model and an interatomic potential for caesium. Phys. Rev. B, 67:1741081–1741089, 2003.

[2]

S. A. Adelman and J. D. Doll. Generalized langevin equation approach for atom-solid-surface scattering - general formulation for classical scattering off harmonic solids. J. Chem. Phys., 64:2375, 1976.

[3]

A. K. Al-Matar and D. A. Rockstraw. A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters. J. Comput. Chem., 25:660–668, 2004.

[4]

M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford: Clarendon Press, 1989.

[5]

N. L. Allinger, Y. H. Yuh, and J.-H. Lii. Molecular mechanics. the mm3 force field for hydrocarbons. J. Am. Chem. Soc., 111:8551, 1998.

[6]

H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys., 72:2384, 1979.

[7]

H. C. Andersen. Rattle: a velocity version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys., 52:24, 1983.

[8]

J.-L. Barrat and L. Bocquet. Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett., 82(23):4671–4674, 1999.

[9]

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81:3684, 1984.

[10]

R. B. et al. Bird. Dynamics of Polymeric Liquids. Volume 1 and 2. Wiley, New York, 1977.

[11]

H. A. Boateng and I. T. Todorov. Arbitrary order permanent cartesian multipolar electrostatic interactions. J. Chem. Phys., 142:034117, 2015. doi:10.1063/1.4905952.

[12]

I. J. Bush. The daresbury advanced fourier transform (daft). Daresbury Laboratory, :, 2000.

[13]

I. J. Bush, I. T. Todorov, and W. Smith. A daft dl_poly distributed memory adaptation of the smoothed particle mesh ewald method. Computer Physics Communications, 175:323, 2006.

[14]

I. J. Bush, I. T. Todorov, and W. Smith. Optimisation of the i/o for distributed data molecular dynamics applications. Cray User Group 2010, 2010.

[15]

J. H. R. Clarke, W. Smith, and L. V. Woodcock. Short-range effective potentials for ionic fluids. J. Chem. Phys., 84:2290, 1986.

[16]

F. Cleri and F. Rosato. Tight-binding potentials for transition metals and alloys. Phys. Rev. B, 48:22, 1993.

[17]

M. W. D. Cooper, M. J. D. Rushton, and R. W. Grimes. Many bodied actinide oxide potentials. J. Phys.: Condens. Matter, 26:105401, 2014.

[18]

X. D. Dai, Y. Kong, J. H. Li, and B. X. Liu. Extended finnis-sinclair potential for bcc and fcc metals and alloys. J. Phys.: Condens. Matter, 18:4527–4542, 2006.

[19]

Szymon L. Daraszewicz, Yvelin Giret, Nobuyasu Naruse, Yoshie Murooka, Jinfeng Yang, Dorothy M. Duffy, Alexander L. Shluger, and Katsumi Tanimura. Structural dynamics of laser-irradiated gold nanofilms. Phys. Rev. B, 88(18):184101, November 2013. URL: http://link.aps.org/doi/10.1103/PhysRevB.88.184101, doi:10.1103/PhysRevB.88.184101.

[20]

M. S. Daw and M. I. Baskes. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B, 29:6443, 1984.

[21]

A Diver, O Dicks, A M Elena, I T Todorov, and K Trachenko. Evolution of amorphous structure under irradiation: zircon case study. Journal of Physics: Condensed Matter, 32(41):415703, sep 2020. URL: https://iopscience.iop.org/article/10.1088/1361-648X/ab9f51, doi:10.1088/1361-648X/ab9f51.

[22]

Paul Drude. Zur elektronentheorie der metalle; ii. teil. galvanomagnetische und thermomagnetische effecte. Annalen der Physik, 308(11):369, 1900. doi:10.1002/andp.19003081102.

[23]

Paul Drude. Zur elektronentheorie der metalle. Annalen der Physik, 306(3):566, 1900. doi:10.1002/andp.19003060312.

[24]

missing publisher in duarte2017

[25]

D. M. Duffy and A. M. Rutherford. Including the effects of electronic stopping and electron\d 0ion interactions in radiation damage simulations. J. Phys.: Condens. Matter, 19(1):016207, 2007. doi:10.1088/0953-8984/19/1/016207.

[26]

D.M. Duffy, S. Khakshouri, and A.M. Rutherford. Electronic effects in radiation damage simulations. Nucl. Instrum. Meth. B, 267(18):3050, 2009. doi:10.1016/j.nimb.2009.06.047.

[27]

J. W. Eastwood, R. W. Hockney, and D. N. Lawrence. P3m3dp - the three dimensional periodic particle-particle/ particle-mesh program. Comput. Phys. Commun., 19:215, 1980.

[28]

P. Español and P. Warren. Statistical mechanics of dissipative particle dynamics. EPL (Europhysics Letters), 30(4):191–196, 1995. URL: http://stacks.iop.org/0295-5075/30/191, doi:10.1209/0295-5075/30/4/001.

[29]

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. A smooth particle mesh ewald method. J. Chem. Phys., 103:8577, 1995.

[30]

D. J. Evans and G. P. Morriss. Non-newtonian molecular dynamics. Computer Physics Reports, 1:297, 1984.

[31]

C. J. Fennell and D. J. Gezelter. Is the ewald summation still necessary? pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys., 124:234104, 2006.

[32]

D. Fincham. Leapfrog rotational algorithms. Molecular Simulation, 8:165, 1992.

[33]

D. Fincham and P. J. Mitchell. Shell model simulations by adiabatic dynamics. J. Phys. Condens. Matter, 5:1031, 1993.

[34]

M. W. Finnis and J. E. Sinclair. A simple empirical n body potential for transition metals. Philos. Mag. A, 50:45, 1984.

[35]

S. M. Foiles, M. I. Baskes, and M. S. Daw. Embedded-atom-method functions for the fcc metals cu, ag, au, ni, pd, pt, and their alloys. Chem. Phys. Lett., 33:7983, 1986.

[36]

K Fuchs. Proc. R. Soc., A, 151:585, 1935.

[37]

G. Gonella, E. Orlandini, and J. M. Yeomans. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. Phys. Rev. Lett., 78:1695, 1997.

[38]

G. S. Grest and K. Kremer. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A, 33:3628, 1986.

[39]

R. D. Groot and P. B. Warren. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys., 107(11):4423–4435, 1997.

[40]

Derek J. Hepburn and Graeme J. Ackland. Metallic-covalent interatomic potential for carbon in iron. Phys. Rev. B, 78(16):165115, Oct 2008. doi:10.1103/PhysRevB.78.165115.

[41]

R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. McGraw-Hill International, 1981.

[42]

P. J. Hoogerbrugge and J. M. V. A. Koelman. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhysics Letters), 19(3):155–160, 1992. URL: http://stacks.iop.org/0295-5075/19/155, doi:10.1209/0295-5075/19/3/001.

[43]

W. G. Hoover. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev., A31:1695, 1985.

[44]

missing title in ikeguchi-04a

[45]

J. A. Izaguirre. Langevin stabilisation of multiscale mollified dynamics. In Bernholc J. Brandt A., Binder K., editor, Multiscale Computational Methods in Chemistry and Physics, volume 117 of NATO Science Series: Series III - Computer and System Sciences, pages 34–47. IOS Press, Amsterdam, 2001.

[46]

Friedel J. Philos. Mag., 43:153, 1952.

[47]

R. A. Johnson. Alloy models with the embedded-atom method. Phys. Rev. B, 39:12556, 1989.

[48]

J Kastner. Umbrella sampling. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1:932–942, 2011. URL: http://onlinelibrary.wiley.com/wol1/doi/10.1002/wcms.66/full, doi:10.1002/wcms.66.

[49]

Galvin S. Khara, Samuel T. Murphy, Szymon L. Daraszewicz, and Dorothy M. Duffy. The influence of the electronic specific heat on swift heavy ion irradiation simulations of silicon. J. Phys.: Condens. Matter, 28(39):395201, October 2016. doi:10.1088/0953-8984/28/39/395201.

[50]

N. Kumagai, K. Kawamura, and T. Yokokawa. An interatomic potential model for h2o: applications to water and ice poly-morphs. Mol. Simul., 12(3-9):177, 1994.

[51]

T. Kumagai, S. Izumi, S. Hara, and S. Sakai. Monte carlo simulations of lattice models for macromolecules. Comput. Mat. Sci., 39:457, 2007. doi:10.1016/j.commatsci.2006.07.013.

[52]

Timothy T. Lau, Clemens J. Först, Xi Lin, Julian D. Gale, Sidney Yip, and Krystyn J. Van Vliet. Many-body potential for point defect clusters in Fe-C alloys. Phys. Rev. Lett., 98(21):215501, May 2007. doi:10.1103/PhysRevLett.98.215501.

[53]

B. Leimkuhler, E. Noorizadeh, and F. Theil. A gentle stochastic thermostat for molecular dynamics. J. Stat. Phys., 135:261–277, 2009.

[54]

J. A. Lemkul, J. Huang, B. Roux, and A. D. MacKerell Jr. An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications. ACS Chem. Rev., 116:4983–5013, 2016. Standard CHARMM polarisation reference. doi:10.1021/acs.chemrev.5b00505.

[55]

I.M. Lifshits, M.I. Kaganov, and L.V. Tanatarov. On the theory of radiation-induced changes in metals. J. Nucl. Energy A, 12(1):69–78, 1960. doi:10.1016/0368-3265(60)90010-4.

[56]

P. J. D. Lindan and M. J. Gillan. Shell-model molecular-dynamics simulation of superionic conduction in caf$_2,$. J. Phys. Condens. Matter, 5:1019, 1993.

[57]

C. P. Lowe. An alternative approach to dissipative particle dynamics. EPL (Europhysics Letters), 47(2):145–151, July 1999. URL: http://dx.doi.org/10.1209/epl/i1999-00365-x, doi:10.1209/epl/i1999-00365-x.

[58]

L. Malerba, M. C. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, and C. S. Becquart. Comparison of empirical interatomic potentials for iron applied to radiation damage studies. Journal of Nuclear Materials, 406(1):19–38, 2010. FP6 IP PERFECT Project: Prediction of Irradiation Damage Effects in Reactor Components.

[59]

G. M. Martyna, D. J. Tobias, and M. L. Klein. Constant pressure molecular dynamics algorithms. J. Chem. Phys., 101:4177, 1994.

[60]

G. M. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein. Explicit reversible integrators for extended system dynamics. Molec. Phys., 87:1117, 1996.

[61]

S. L. Mayo, B. D. Olafson, and W. A. Goddard. Dreiding: a generic force field for molecular simulations. J. Phys. Chem., 94:8897, 1990. Standard DREIDING reference.

[62]

J. A. McCammon and S. C. Harvey. Dynamics of Proteins and Nucleic Acids. Cambridge: University Press, 1987.

[63]

S. Melchionna, G. Ciccotti, and B. L. Holian. Hoover npt dynamics for systems varying in shape and size. Molec. Phys., 78:533, 1993.

[64]

Gustav Mie. Zur kinetischen theorie der einatomigen körper. Annalen der Physik, 11:657–697, 1903.

[65]

T. F. Miller, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, and G. M. Martyna. Symplectic quaternion scheme for biophysical molecular dynamics. J. Chem. Phys., 116:8649, 2002. Standard NOSQUISH reference.

[66]

Letif Mones, Petr Kulháek, István Simon, Alessandro Laio, and Monika Fuxreiter. The energy gap as a universal reaction coordinate for the simulation of chemical reactions. The Journal of Physical Chemistry B, 113(22):7867–7873, 2009. PMID: 19432459. URL: https://doi.org/10.1021/jp9000576, arXiv:https://doi.org/10.1021/jp9000576, doi:10.1021/jp9000576.

[67]

Samuel T. Murphy, Szymon L. Daraszewicz, Yvelin Giret, Matthew Watkins, Alexander L. Shluger, Katsumi Tanimura, and Dorothy M. Duffy. Dynamical simulations of an electronically induced solid-solid phase transformation in tungsten. Physical Review B, 92:134110, October 2015.

[68]

M. Neumann. The dielectric constant of water. computer simulations with the mcy potential. J. Chem. Phys., 82:5663, 1985.

[69]

P. Olsson, J. Wallenius, C. Domain, K. Nordlund, and L. Malerba. Two-band modeling of \bf -prime phase formation in fe-cr. Phys. Rev. B, 72:2141191–2141196, 2005.

[70]

I. Pagonabarraga and D. Frenkel. Dissipative particle dynamics for interacting systems. Journal of Chemical Physics, 115(11):5015–5026, 2001. URL: http://link.aip.org/link/?JCP/115/5015/1, doi:10.1063/1.1396848.

[71]

Alfonso Pedone, Gianluca Malavasi, M. Cristina Menziani, Alastair N. Cormack, and Ulderico Segre. A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. The Journal of Physical Chemistry B, 110(24):11780–11795, 2006. PMID: 16800478. doi:10.1021/jp0611018.

[72]

E. A. J. F. Peters. Elimination of time step effects in DPD. EPL (Europhysics Letters), 66(3):311–317, May 2004. URL: http://dx.doi.org/10.1209/epl/i2004-10010-4, doi:10.1209/epl/i2004-10010-4.

[73]

M. R. S. Pinches, D. Tildesley, and W. Smith. Large scale molecular dynamics on parallel computers using the link cell algorithm. Molecular Simulation, 6:51, 1991.

[74]

J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio Jr., M. Head-Gordon, G. N. I. Clark, M. E. Johnson, and T. Head-Gordon. Current status of the amoeba polarizable force field. J. Phys. Chem. B, 114:2549–2564, 2010.

[75]

D. Quigley and M. I. J. Probert. Langevin dynamics in constant pressure extended system. J. Chem Phys., 120:11432, 2004.

[76]

V. Rühle, C. Junghans, A. Lukyanov, K. Kremer, and D. Andrienko. Versatile object-oriented toolkit for coarse-graining applications. J. Chem. Theory Comput., 5:3211, 2009.

[77]

H. Rafii-Tabar and A. P. Sutton. Long range finnis-sinclair potentials for f.c.c. metalic allows. Philos. Mag. Lett., 63:217, 1991.

[78]

P. Raiteri and J. D. Gale. Water is the key to non-classical nucleation of amorphous calcium carbonate. J. Am. Chem. Soc., 132:17623–17634, 2010.

[79]

Paolo Raiteri, Julian D. Gale, David Quigley, and P. Mark Rodger. Derivation of an accurate force-field for simulating the growth of calcium carbonate from aqueous solution: a new model for the calcite\bfwater interface. The Journal of Physical Chemistry C, 114(13):5997–6010, 2010. doi:10.1021/jp910977a.

[80]

Jorge Ramírez, Sathish K. Sukumaran, Bart Vorselaars, and Alexei E. Likhtman. Efficient on the fly calculation of time correlation functions in computer simulations. The Journal of Chemical Physics, 10 2010. 154103. URL: https://doi.org/10.1063/1.3491098, arXiv:https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3491098/13797333/154103\_1\_online.pdf, doi:10.1063/1.3491098.

[81]

D. C. Rapaport. Multi-million particle molecular dynamics. i. design considerations for distributed processing. Comput. Phys. Commun., 62:217, 1991.

[82]

D. Reith, M. Pütz, and F. Mü, ller-Plathe. Deriving effective mesoscale potentials from atomistic simulations. J. Comp. Chem., 24:1624, 2003.

[83]

A. L. Rohl, K. Wright, and J. D. Gale. Evidence from surface phonons for the (2 x 1) reconstruction of the (10-14) surface of calcite from computer simulation. Amer. Mineralogist, 88:921, 2003.

[84]

J. P. Ryckaert and A. Bellemans. Molecular-dynamics of liquid normal-butane near its boiling-point. Chem. Phys. Lett., 30:123, 1975.

[85]

J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys., 23:327, 1977.

[86]

C. Sagui, L. Pedersen, and T. Darden. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. J. Chem. Phys., 120:73, 2004.

[87]

A. Samoletov, M. A. J. Chaplain, and C. P. Dettmann. Thermostats for “slow” configurational modes. J. Stat. Phys., 128:1321–1336, 2007.

[88]

M. E. Schmidt, S. Shin, and S. A. Rice. Molecular dynamics studies of langmuir monolayers of f(cf$_2$)$_11$cooh. J. Chem. Phys., 104:2101, 1996.

[89]

U. Schroder. A new approach for lattice dynamics (breathing shell model). Solid State Commun., 4:347–349, 1966.

[90]

Ivan Scivetti, Kakali Sen, Alin M. Elena, and Ilian Todorov. Reactive molecular dynamics at constant pressure via nonreactive force fields: extending the empirical valence bond method to the isothermal-isobaric ensemble. The Journal of Physical Chemistry A, 124(37):7585–7597, 2020. PMID: 32820921. URL: https://doi.org/10.1021/acs.jpca.0c05461, arXiv:https://doi.org/10.1021/acs.jpca.0c05461, doi:10.1021/acs.jpca.0c05461.

[91]

Michael Seaton, Richard Anderson, Sebastian Metz, and William Smith. DL_MESO: highly scalable mesoscale simulations. Molecular Simulation, 39(10):796–821, 2013. doi:10.1080/08927022.2013.772297.

[92]

Tony Shardlow. Splitting for dissipative particle dynamics. SIAM Journal on Scientific Computing, 24(4):1267–1282, 2003. URL: http://link.aip.org/link/?SCE/24/1267/1, doi:10.1137/S1064827501392879.

[93]

J. R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, Edition 1 1/4. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, August 4, 1994.

[94]

W. Smith. Ccp5: a collaborative computational project for the computer simulation of condensed phases. Molecular Graphics, 5:71, 1987.

[95]

W. Smith. Molecular dynamics on hypercube parallel computers. Comput. Phys. Commun., 62:229, 1991.

[96]

W. Smith. A replicated data molecular dynamics strategy for the parallel ewald sum. Comput. Phys. Commun., 67:392, 1992.

[97]

W. Smith. Calculating the pressure. CCP5 Information Quarterly, 39:14, 1993.

[98]

W. Smith. Molecular dynamics on distributed (mimd) parallel computers. Theoretica. Chim. Acta., 84:385, 1993.

[99]

W. Smith. The dl_poly graphical user interface. Daresbury Laboratory, :, 2003.

[100]

W. Smith and D. Fincham. The ewald sum in truncated octahedral and rhombic dodecahedral boundary conditions. Molecular Simulation, 10:67, 1993.

[101]

W. Smith and T. R. Forester. Parallel macromolecular simulations and the replicated data strategy. 1: the computation of atomic forces. Comput. Phys. Commun., 79:52, 1994.

[102]

W. Smith and T. R. Forester. Parallel macromolecular simulations and the replicated data strategy. 2: the rd-shake algorithm. Comput. Phys. Commun., 79:63, 1994.

[103]

W. Smith and T. R. Forester. Dl_poly_2.0: a general purpose parallel molecular simulation package. J. Molec. Graphics, 14:136, 1996. Standard DL_POLY 2.0 reference.

[104]

W. Smith, G. N. Greaves, and M. J. Gillan. Computer simulation of sodium disilicate glass. J. Chem. Phys., 103:3091, 1995.

[105]

V. P. Sokhan, M. A. Seaton, and I. T. Todorov. Phase behaviour of coarse-grained fluids. Soft Matter, 19:5824, 2023. Reference for nDPD potential.

[106]

Simeon D. Stoyanov and Robert D. Groot. From molecular dynamics to hydrodynamics: A novel Galilean invariant thermostat. Journal of Chemical Physics, 122(11):114112, 2005. URL: http://link.aip.org/link/?JCP/122/114112/1, doi:10.1063/1.1870892.

[107]

H. Sun. Compass: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B, 102(38):7338–7364, 1998.

[108]

A. P. Sutton and J. Chen. Long range finnis-sinclair potentials. Philos. Mag. Lett., 61:139, 1990.

[109]

J. Tersoff. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B, 39:5566, 1989.

[110]

B. T. Thole. Molecular polarizabilities calculated with a modified dipole interaction. J. Chem. Phys., 59:341–350, 1981.

[111]

B. D. Todd and R. M. Lynden-Bell. Surface and bulk properties of metals modelled with sutton-chen potentials. Surf. Science, 281:191, 1993.

[112]

I. T. Todorov, I. J. Bush, and A. R. Porter. Dl poly 3 i/o: analysis, alternatives and future strategies. Parallel Scientific Computing and Optimization. Springer Optimization and Its Applications, 2009. February 2008, Lithuania. doi:10.1007/978-0-387-09707-7.

[113]

I. T. Todorov, I. J. Bush, and W. Smith. The need for parallel i/o in classical molecular dynamics. Cray User Group 2008, 2008.

[114]

I. T. Todorov and W. Smith. Dl_poly_3: the ccp5 national uk code for molecular-dynamics simulations. Phil. Trans. R. Soc. Lond. A, 362:1835, 2004.

[115]

I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove. Dl_poly_3: new dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem., 16:1611–1618, 2006.

[116]

G. M. Torrie and J. P. Valleau. Nonphysical sampling distributions in monte carlo free-energy estimation: umbrella sampling. Journal of Computational Physics, 23:187–199, 1977.

[117]

Kostya Trachenko, Martin T Dove, and Ekhard K H Salje. Reply to comment on 'large swelling and percolation in irradiated zircon'. Journal of Physics: Condensed Matter, 15(37):6457, 2003. URL: http://stacks.iop.org/0953-8984/15/i=37/a=N02.

[118]

S. Y. Trofimov, E. L. F. Nies, and M. A. J. Michels. Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures. Journal of Chemical Physics, 117(20):9383–9394, 2002. URL: http://link.aip.org/link/?JCP/117/9383/1, doi:10.1063/1.1515774.

[119]

W. F. van Gunsteren and H. J. C. Berendsen. Groningen Molecular Simulation (GROMOS) Library Manual. BIOMOS, Nijenborgh, 9747 Ag Groningen, The Netherlands, 1987. Standard GROMOS reference.

[120]

B. Vessal. Simulation studies of silicate phosphates. J. Non-Cryst. Solids, 177:103, 1994.

[121]

Xipeng Wang, Simon Ramirez-Hinestrosa, Jure Dobnikar, and Daan Frenkel. The lennard-jones potential: when (not) to use it. Phys. Chem. Chem. Phys., 22:10624–10633, 2020. URL: http://dx.doi.org/10.1039/C9CP05445F, doi:10.1039/C9CP05445F.

[122]

H. R. Jr. Warner. Kinethic theory and rheology of dilute suspensions of finitely extensible dumbbells. ind. Eng. Chem. Fundam., 11:379, 1972.

[123]

J. D. Weeks, D. Chandler, and H. C. Andersen. Roles of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys., 54:5237, 1971.

[124]

missing title in weiner-86a

[125]

E. Zarkadoula, S. L. Daraszewicz, D. M. Duffy, M. A. Seaton, I. T. Todorov, K. Nordlund, M. T. Dove, and K. Trachenko. Electronic effects in high-energy radiation damage in iron. J. Phys.: Condens. Matter, 26(8):085401, 2014. doi:10.1088/0953-8984/26/8/085401.

[126]

J. F. Ziegler, J. P. Biersack, and U. Littmark. The Stopping and Range of Ions in Matter. Pergamon, New York, 1985.